固体退火过程组合优化问题物理系统中的一个状态组合优化Read课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《固体退火过程组合优化问题物理系统中的一个状态组合优化Read课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 退火 过程 组合 优化 问题 物理 系统 中的 一个 状态 Read 课件
- 资源描述:
-
1、l局部搜索方法l模拟退火算法l遗传算法l很多问题属于优化问题,或者可以转化为优化问题l如TSP问题,皇后问题l设x是决策变量,D是x的定义域,f(x)是指标函数,g(x)是约束条件集合。则优化问题可以表示为,求解满足g(x)的f(x)最小值问题。l如果在定义域D上,满足条件g(x)的解是有限的,则优化问题称为组合优化问题。)(|)(minxgxfDxl对于组合优化问题,由于其可能的解是有限的,当问题的规模比较小时,总可以通过枚举的方法获得问题的最优解,但当问题的规模比较大时,就难于求解了。l常用的算法复杂度函数)(),!(),(),2(),(),log(),(),(loglog2nnnnOnO
2、nOOnOnnOnOnO 输入量输入量n复杂性函数复杂性函数10203040100n10ns20ns30ns40ns100nsnlogn10ns26.0ns44.3ns64.1ns200nsn2100ns400ns900ns1.6us10us2n1.0us1.0ms1.1s18.3min4.0世纪世纪n!3.6ms77.1年年8.41013世纪世纪2.61029世纪世纪3.010139世纪世纪时间复杂性函数比较(10亿次/秒)l旅行商问题l背包问题l装箱问题l.l寻求在可以接受的时间内得到满意解的方法l邻域,简单的说就是一个点附近的其他点的集合。l在距离空间,邻域就是以某一点为中心的圆。l组合
3、优化问题的定义:l设D是问题的定义域,若存在一个映射N,使得:则称N(S)为S的邻域。DSNDSN2)(:lS=Si表示一个可能解,其中Si表示在第i行,第Si列有一个皇后。l如四皇后问题的一个解:S=(2,4,1,3)Q QQ Q l定义映射N为棋盘上任意两个皇后的所在行或列进行交换,即S中任意两个元素交换位置。l例:当S=(2,4,1,3)时,其邻域为:lN(S)=(4,2,1,3),(1,4,2,3),(3,4,1,2),(2,1,4,3),(2,3,1,4),(2,4,3,1)l用一个城市的序列表示一个可能的解。l通过交换两个城市的位置获取S的邻居 l例:简单交换方法 设S=(x1,x
4、2,xi-1,xi,xi+1,xj-1,xj,xj+1,xn)则通过交换xi和xj两个城市的位置可以得到S的一个邻居:S=(x1,x2,xi-1,xj,xi+1,xj-1,xi,xj+1,xn)x1x2xnxj+1xjxj-1xi-1xixi+1x1x2xnxj+1xjxj-1xi-1xixi+1l例:逆序交换方法 设xi、xj是选取的两个城市,所谓的逆序交换方式是指,通过逆转xi、xj两个城市之间的城市次序来得到S的邻居。设:S=(x1,x2,xi-1,xi,xi+1,xj-1,xj,xj+1,xn)则:S=(x1,x2,xi-1,xi,xj-1,x j-2,xi+1,xj,xj+1,xn)
5、x1x2xnxj+1xjxj-1xi-1xixi+1x1x2xnxj+1xjxj-1xi-1xixi+1l基本思想:在搜索过程中,始终向着离目标最接近的方向搜索。l目标可以是最大值,也可以是最小值。l在后面的介绍中,如果没有特殊说明,均假定是最小值。局部搜索算法(Local Search)1,随机的选择一个初始的可能解x0D,xb=x0,P=N(xb);2,如果不满足结束条件,则3,Begin4,选择P的一个子集P,xn为P中的最优解5,如果f(xn)f(xb),P=P xn =(a,d,c,b,e),(a,e,c,d,b),(a,b,d,c,e),(a,b,e,d,c),(a,b,c,e,d
6、)从P中选择一个元素,假设xn=(a,d,c,b,e),f(xn)=45,f(xn)f(xb),P=P xn =(a,e,c,d,b),(a,b,d,c,e),(a,b,e,d,c),(a,b,c,e,d)从P中选择一个元素,假设xn=(a,e,c,d,b),f(xn)=44,f(xn)f(xb),P=P xn =(a,b,d,c,e),(a,b,e,d,c),(a,b,c,e,d)从P中选择一个元素,假设xn=(a,b,d,c,e),f(xn)=44,f(xn)f(xb),P=P xn=(a,b,e,d,c),(a,b,c,e,d)从P中选择一个元素,假设xn=(a,b,e,d,c),f(x
7、n)=34,f(xn)f(xb),P=P xn =(a,d,e,b,c),(a,c,e,d,b),(a,b,d,e,c),(a,b,c,d,e),(a,b,e,c,d)从P中选择一个元素,假设xn=(a,d,e,b,c),f(xn)=39,f(xn)f(xb),P=P xn =(a,c,e,d,b),(a,b,d,e,c),(a,b,c,d,e),(a,b,e,c,d)从P中选择一个元素,假设xn=(a,c,e,d,b),f(xn)=38,f(xn)f(xb),P=P xn =(a,b,d,e,c),(a,b,c,d,e),(a,b,e,c,d)从P中选择一个元素,假设xn=(a,b,d,e,
8、c),f(xn)=38,f(xn)f(xb),P=P xn=(a,b,c,d,e),(a,b,e,c,d)从P中选择一个元素,假设xn=(a,b,c,d,e),f(xn)=38,f(xn)f(xb),P=P xn=(a,b,e,c,d)从P中选择一个元素,假设xn=(a,b,e,c,d),f(xn)=41,f(xn)f(xb),P=P xn=P等于空,算法结束,得到结果为xb=(a,b,e,d,c),f(xb)=34。l局部最优问题l l每次并不一定选择邻域内最优的点,而是依据一定的概率,从邻域内选择一个点,指标函数优的点,被选中的概率比较大,而指标函数差的点,被选中的概率比较小。l设求最大值
9、:)(max)()()(xNxjiijxfxfxPl当求最小值时:)(11)(1)(1()(1)(max)(maxmaxminixNxjiixPxNxPxPxPj局部搜索算法1(Local Search 1)1,随机的选择一个初始的可能解x0D,xb=x0,P=N(xb)2,如果不满足结束条件,则3,Begin4,对于所有的xP计算指标函数f(x),并按照式(3)或者式(4)计算每一个点 x的概率5,依计算的概率值,从P中随机选择一个点 xn,xb xn,P=N(xb),转26,End7,输出计算结果8,结束l步长问题 初始值搜索到的最优解l变步长初始值搜索到的最优解局部搜索算法2(Local
10、 Search 2)1,随机的选择一个初始的可能解x0D,xb=x0,确定一个初始步长计算P=N(xb)2,如果不满足结束条件,则3,Begin4,选择P的一个子集P,xn为P中的最优解5,如果f(xn)f(xb),则xb xn6,按照某种策略改变步长,计算P=N(xb),转27,否则P=P P,转2。8,End9,输出计算结果10,结束l起始点问题AB全局最大值局部最大值l随机的生成一些初始点,从每个初始点出发进行搜索,找到各自的最优解。再从这些最优解中选择一个最好的结果作为最终的结果。局部搜索算法3(Local Search 3)1,k=02,随机的选择一个初始的可能解x0D,xb=x0,
11、P=N(xb)3,如果不满足结束条件,则4,Begin5,选择P的一个子集P,xn为P中的最优解6,如果f(xn)f(xb),则xb xn,P=N(xb),转37,否则P=P P,转3。8,End9,k=k+110,如果k达到了指定的次数,则从k个结果中选 择一个最好的结果输出,否则转(2)11,输出结果12,结束 l以上几种解决方法可以结合在一起使用,比如第一、第二种方法的结合,就产生了我们将在后面介绍的模拟退火方法。皇后搜索算法(Queen Search)1,随机地将n个皇后分布在棋盘上,使得棋盘 的每行、每列只有一个皇后。2,计算皇后间的冲突数conflicts。3,如果冲突数confl
12、icts等于0,则转(6)4,对于棋盘上的任意两个皇后,交换他们的行 或者列,如果交换后的冲突数conflicts减少,则接受这种交换,更新冲突数conflicts,转3。5,如果陷入了局部极小,既交换了所有的皇后 后,冲突数仍然不能下降,则转1。6,输出结果7,结束。皇皇 后后 数数1005001000200050001000030000平均时间平均时间(秒)(秒)55122817090010000l是局部搜索算法的一种扩展l最早由Metropolis在1953年提出,Kirkpatrick等人在1983年成功地将模拟退火算法用于求解组合优化问题。l基本思想是借用金属的退化过程改进局部搜索算
13、法l溶解过程:随着温度的不断上升,粒子逐渐脱离开其平衡位置,变得越来越自由,直到达到固体的溶解温度,粒子排列从原来的有序状态变为完全的无序状态。l退火过程:随着温度的下降,粒子的热运动逐渐减弱,粒子逐渐停留在不同的状态,其排列也从无序向有序方向发展,直至到温度很低时,粒子重新以一定的结构排列。l l粒子不同的排列结构,对应着不同的能量水平。如果退火过程是缓慢进行的,也就是说,温度的下降如果非常缓慢的话,使得在每个温度下,粒子的排列都达到一种平衡态,则当温度趋于0(绝对温度)时,系统的能量将趋于最小值。l如果以粒子的排列或者相应的能量来表达固体所处的状态,在温度T下,固体所处的状态具有一定的随机
14、性。一方面,物理系统倾向于能量较低的状态,另一方面,热运动又妨碍了系统准确落入低能状态。l从状态i转换为状态j的准则:l如果E(j)E(i),则状态转换被接受;l如果E(j)E(i),则状态转移被接受的概率为:l其中E(i)、E(j)分别表示在状态i、j下的能量,T是温度,K0是波尔兹曼常数。KTjEiEe)()(l在给定的温度T下,当进行足够多次的状态转换后,系统将达到热平衡。此时系统处于某个状态i的概率由波尔兹曼(Boltzmann)分布给出:l (6)l其中 为归一化因子,S是所有可能状态的集合。TKTiEiZeTP)(SjKTjETeZ)(l考察一下式(6)随温度T的变化情况:同一温度
展开阅读全文