北师大版九年级下册数学全册教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版九年级下册数学全册教案.doc》由用户(wenku818)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 九年级 下册 数学 教案 下载 _九年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、北师大版九年级下册数学全册教案第一章直角三角形的边角关系1.从梯子的倾斜程度谈起(一)一、学生知识状况分析本节课从生活实例出发,让学生观察多种梯子倾斜的情况,对于梯子的倾斜问题学生在生活中也有一定的生活经验,可以很容易通过观察分析出简单的梯子倾斜情况,但对于倾斜角度非常接近的情况,就需要通过本节课的学习利用直角三角形三边的关系来判断。二、教学任务分析本节课教学目标如下:知识与技能:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.过程与方法:1.体验数形之间的联系
2、,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略的多样性,发展实践能力和创新精神.情感态度与价值观:1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点:理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.教学难点:理解正切的意义,并用它来表示两边的比三、教学过程分析本节课设计了七个教学环节:课前准备社会调查、情境引入、统计图的选择、合作学习、练习提高、课堂小结、布置作业。第一环节 生活情景(获取信息,体会特点)活动内容:从生活实践开始,让学生思考如何测量一座古塔的高度,并回答以下问题
3、:在直角三角形中,知道一边和一个锐角,你能求出其它的边和角吗?猜一猜,这座古塔有多高?想一想,你能运用所学的数学知识测出这座古塔的小明在A处仰望塔顶,测得1的大小,再往塔的方向前进50m到B处,又测得2的大小,根据这些他就求出了塔的高度.你知道他是怎么做的吗?A活动目的:让学生初步从生活中去体会利用直角三角形的边角关系,可以知道一边和一个锐角,求出其它的边和角,并通过测古塔高度这一实验,让学生初步感受到倾斜程度在生活中的应用。实际教学效果:学生能理解小明测古塔的方法,并能初步感受到倾斜程度在生活中的应用,生动的课堂引入让学生很快进入了求知的状态。第二环节 同类问题的多种分析,课题引
4、入活动内容:1、分析位同学的四个相同的问题,让学生学习探索梯子的倾斜程度。问题:下列个图中,梯子AB和EF哪个更陡?你是怎样判断的?1.53.51.3图25.图156图4463图3、引出思考:AB1C2C1B2w直角三角形的边与角的关系1).RtAB1C1和RtAB2C2有什么关系?如果改变B2在梯子上的位置(如B3C3 )呢?由此你得出什么结论?活动目的:让学生积极参与数学活动,对数学产生好奇心和求知欲。形成实事求是的态度以及独立思考的习惯。并让他们从实例中发现不同情况中对比梯子的倾斜程度需要除了观察还需要更多其他方法。实际教学效果:学生经过前一环节对测量古塔的高度一例已经有了对梯子倾斜度的
5、初步认识,对与上面4个图,学生可以很快分辨出图1和图4中梯子的倾斜程度,但是对于两条直角边长度都不一致的图2图3感到难度,并且发现需要利用其他新的知识来认识梯子的倾斜程度,这也就很自然地引入了本节课的知识点:正切值。 第四环节 课题重点活动内容:正切的定义(1)明确各边的名称。(2)。(3)明确要求:1)必须是直角三角形;2)是A的对边与A的邻边的比值。(4)tanA的值越大,梯子AB越陡;A越大,梯子AB越陡。活动目的:经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系。实际教学效果:学生经历了观察、探索等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自
6、己的观点。通过上面的例子体验了数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系。第五环节 练习与提高活动内容: 例1下图表示两个自动扶梯,哪一个自动扶梯比较陡?甲6m8m5m13m乙如图,在ACB中,C = 90,AC = 6,求BC、AB的长。、如图,在等腰ABC中,AB=AC=13,BC=10,求tanB.活动目的:让学生运用新知识能解决与直角三角形有关的实际问题,并将进一步感受数形结合的思想,体会数形结合的方法。学生能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡
7、度等,并能够用正切进行简单的计算。实际教学效果:以上个例题都比较基础,并且层层深入,其中第题,学生需要做辅助线,加深学生对正切的理解,正切的前提必须是一个直角三角形。第六环节 小结与拓展活动内容:师生互相交流总结本堂课所学的知识点活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励),让学生能正确阐述对正切、倾斜程度、坡度等数学意义的理解。实际教学效果:学生能畅所欲言自己的切身感受与实际收获,对各知识点掌握透彻。第七环节 布置作业作业:书本 P 6 随堂练习: 1、2 ; 习题1.1 1、2四、教学反
8、思通过本节课的学习,学生能运用新知识解决与直角三角形有关的实际问题,进一步感受数形结合的思想,体会数形结合的方法。但是课堂上学生的参与还不足,学生的积极回答还有待进一步提高。第一章直角三角形的边角关系1.从梯子的倾斜程度谈起(二)一、学生知识状况分析本课是第九册第一章第一节从梯子的倾斜程度谈起的第二课时,由于学生在前一节课学习过有关正切的知识,但对于直角三角形只能停留在两直角边之间的关系,那么,直角三角形中斜边与直角边之间是否也存在着一定的关系呢?本节课首先通过实验的方法,让学生真正领会到直角三角形中斜边与直角边之间确实也存在着一定的关系。二、教学任务分析本课是第九册第一章第一节从梯子的倾斜程
9、度谈起的第二课时,是通过实验的方法,让学生真正领会到直角三角形中斜边与直角边之间确实也存在着一定的关系,从而,探索出直角三角形中,一个锐角的直角边与斜边的比是随锐角的大小变化而变化的。在试验过程中,不同学生对问题的理解是不一样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生开展讨论,给学生提供成果展示的机会,培养学生的交流能力及学习数学的自信心.在学习的过程中,有些活动学生很容易就能得到结论,但要重视试验的作用。鼓励每一位学生亲自试验,要注意克服想当然的习惯、缺乏主动实践探索的意识,鼓励学生验证试验结果的合理性。本节课教学目标如下:教学目标:(一)教学知识点:1.经历探索直角三
10、角形中边角关系的过程.理解正弦、余弦的意义和与现实生活的联系.2.能够用sinA,cosA表示直角三角形中斜边与直角边的比,表示生活中物体的倾斜程度,能够用正弦、余弦进行简单的计算.(二)能力训练要求:1.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求:1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点:理解正弦、余弦的数学意义,密切数学与生活的联系.教学难点:理解正弦、余弦的数学意义,并用它来表示两边的比.三、教学过程分析本
11、节课设计了六个教学环节:第一环节 创设情境;第二环节:探求新知;第三环节:随堂练习;第四环节:课堂小结;第五环节:课堂体会;第六环节: 布置作业。第一环节 创设情境(1)我们在上一节课学习了直角三角形中的一种边与角的关系:锐角的三角函数-正切函数。即:在直角三角形中,若一个锐角的对边与邻边的比值是一个定值,那么这个角的值也随之确定.在RtABC中,锐角A的对边与邻边的比叫做A的正切,记作tanA,当RtABC中的一个锐角A确定时,其它边之间的比值也确定吗?今天这节课,我们就来学习第九册(下)第一章:直角三角形的边角关系:正弦与余弦。(2)上节课,我们研究了“
12、陡”这个字,明确了梯子摆放的“陡”与“缓”,是与梯顶、 梯脚到墙角的距离比有关的。下面请同学们模拟实验,是否还与梯长与梯顶或梯脚到墙角的距离比有关呢?第二环节 探求新知1、摆一摆请大家拿出我们课前准备的模拟墙体和两架模拟梯子:(1)首先,把两架梯子摆在同一面墙上,使其中一架梯子比较陡。(2)我们在摆的过程中,要仔细观察,认真思考,探索一下,要想把一个梯子摆得陡一些,除了与倾斜角的大小有关之外,还与那些因素有关呢?(3)通过观察,我们可以得到:要想把一个梯子摆得陡一些,与梯子的对边与邻边有关。那么是不是单纯地与倾斜角的对边或邻边有关呢?为了探索这个一般规律,请同学们接着来
13、摆梯子,使其中一架梯子比较陡。这一次,我们要边摆,边度量每个梯子倾斜角的对边与邻边,并计算每个倾斜角的对边与邻边的比值,之后每组填好实验报告。(展示数据及结论)(4)实验结论:梯子越陡,倾斜角的对边与斜边的比值越大,邻边与斜边的比值越小。2、想一想:上节课,我们研究了:在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,我们可以用一种巧妙的方法得到梯子的倾斜程度:在梯子上任选一点B1,、B2,如图1-3,通过测量B1C1及AC1,算出它们的比,来说明梯子的倾斜程度;也可通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度。在这里,我们能否类似的研究呢?(1)RtAB1
14、C1和RtAB2C2有什么关系?(2)和有什么关系?和有什么关系?(3)如果改变梯子的位置呢?由此你得出什么结论?3、有关的概念在Rt ABC中,如果锐角A确定,那么A的对边与斜边的比,叫做A的正弦。记作sinA.A的邻边与斜边的比也随之确定,这个比叫做A的余弦。记作cosA.注意的问题:(1)sinA,cosA中常省去角的符号“”。(2)sinA,cosA没有单位,它表示一个比值。(3)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”。(4)在初中阶段,sinA,cosA中,A是一个锐角。4、议一议:梯子的倾斜程度与sinA,cosA的关系:梯子AB越陡,sinA的
15、值越大 , cosA的值越小 5、例题分析:例1:如图:在RtABC中,B=900,AC=200,sinA=0.6.求:BC的长.(老师期望:请你求出cosA,tanA,sinC,cosC和tanC的值.你敢应战吗?)例2如图:在RtABC中,C=900,AC=10,cosA=,求:AB,sinB(老师期望:注意到这里cosA=sinB,其中有没有什么内有的关系?)第三环节 随堂练习1.如图:在等腰ABC中,AB=AC=5,BC=6.求: sinB,cosB,tanB(老师提示:过点A作AD垂直于BC于D. )2.在RtABC中,C=900,BC=20,sinA=,求
16、:ABC的周长3.在RtABC中,锐角A的对边和邻边同时扩大100倍,sinA的值( )A.扩大100倍 B.缩小100倍 C.不变 D.不能确定4.已知A,B为锐角 (1)若A=B,则sinAsinB; (2)若sinA=sinB,则AB.5.如图, C=90CDAB.SinB=( )=( )=( ) 6.在上图中,若BD=6,CD=12.求cosA的值.(老师提示:模型“双垂直三
17、角形”的有关性质你可曾记得.)7.如图,分别根据下面两图,求出A的三个三角函数值.8.在RtABC中,C=90, AC=3,AB=6,求sinA和cosB (老师提示:求锐角三角函数时,勾股定理的运用是很重要的.)9在等腰ABC中,AB=AC=13,BC=10,求sinB,cosB.10.在梯形ABCD中,AD/BC,AB=DC=13,AD=8,BC=18求:sinB,cosB,tanB.(老师提示:作梯形的高是梯形的常用辅助,借助它可以转化为直角三角形.)第四环节 小结1.锐角三角函数定义:sinA,cosA,tanA, 是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三
18、角形).sinA,cosA,tanA, 是一个完整的符号,表示A的正切,习惯省去“”号;sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均0,无单位.sinA,cosA,tanA, 的大小只与A的大小有关,而与直角三角形的边长无关.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.2请思考:在RtABC中, sinA和cosB有什么关系? 第五环节 体会数学中的某些定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏极深. 高斯第六环节 作业1.在ABC中,AB=5,BC=13,AD是BC边上的高,AD=
19、4.求:CD,sinC.2.在RtABC中,BCA=90,CD是中线,BC=8,CD=5.求sinACD,cosACD和tanACD.3.在RtABC中,C=90,sinA和cosB有什么关系?4.在RtABC中,C=90,sinA和cosB有什么关系?四、教学反思由于上节课学生学习了三角函数中的正切,所以本节课结合初中学生身心发展的特点,运用了类比法教学法,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的基本认识规律,运用好这些直观教学,能使学生学习数学的过程成为积极的愉快的和富有想象的过程,使学习数学的过程
20、不再是令人生畏的过程。第一章直角三角形的边角关系2. 30、45、60角的三角函数值一、学生知识状况分析学生的知识技能基础:本节课前学生已经学习了正切、正弦、余弦的定义学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析本节课教学目标如下:知识与技能:1历探索30、45、60角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的
21、意义。2能够进行30、45、60角的三角函数值的计算3能够根据30、45、60的三角函数值说明相应的锐角的大小过程与方法:1经历探索30、45、60角的三角函数值的过程,发展学生观察、分析、发现的能力。情感态度与价值观:1培养学生把实际问题转化为数学问题的能力。教学重点:能够进行30、45、60角的三角函数值的计算;能够根据30、45、60的三角函数值说明相应的锐角的大小教学难点:三角函数值的应用三、教学过程分析本节课设计了六个教学环节:复习巩固、活动探究、讲解新课、知识应用、小结与拓展、作业布置。第一环节 复习巩固活动内容:如图所示 在 RtABC中,C=90。B
22、 (1)a、b、c三者之间的关系是,A+B=。c a (2)sinA= ,cosA=,A b CtanA= 。sinB=,cosB= ,tanB= 。 (3)若A=30,则=。活动目的:复习巩固上一节课的内容第二环节 活动探究活动内容:问题为了测量一棵大树的高度,准备了如下测量工具:含30和60两个锐角的三角尺;皮尺.请你设计一个测量方案,能测出一棵大树的
23、高度. 我们组设计的方案如下: 让一位同学拿着三角尺站在一个适当的位置B处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C点,30的邻边和水平方向平行,用卷尺测出AB的长度,BE的长度,因为DE=AB,所以只需在RtCDA中求出CD的长度即可. 我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30的正切值,在上图中,tan30=,则CD=atan30,岂不简单. 你能求出30角的三个三角函数值吗?活动目的:引出课题,激发学生的学习积极性第三环节  
24、;讲解新课活动内容:探索30角的三角函数值观察一副三角尺,其中有几个锐角?它们分别等于多少度? sin30等于多少呢?你是怎样得到的?与同伴交流.cos30等于多少?tan30呢?学生探讨、交流,得出 30角的三角函数值2我们求出了30角的三个三角函数值,还有两个特殊角45、60,它们的三角函数值分别是多少?你是如何得到的?3请学生完成下表三角函数角sincotan3045160(1)我们观察表格中函数值的特点.先看第一列30、45、60角的正弦值,你能发现什么规律呢?(2)再次观察表格,你还能发现什么?从下列两个方面考虑a随着角度的增加,正弦、余弦、正切值的变化情况。b若对于锐角a有sina
展开阅读全文