公司理财罗斯(第八版)第10章收益和风险:资本资产定价模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《公司理财罗斯(第八版)第10章收益和风险:资本资产定价模型课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公司 理财 罗斯 第八 10 收益 风险 资本 资产 定价 模型 课件
- 资源描述:
-
1、第第10章章 收益和风险:资本资产定价收益和风险:资本资产定价模型模型2/2/20232第第10章章 目录目录10.1 单一证券单一证券 10.2 期望收益、方差和协方差期望收益、方差和协方差 10.3 投资组合的收益与风险投资组合的收益与风险 10.4 两种资产组合的有效集两种资产组合的有效集 10.5多种资产组合的有效集多种资产组合的有效集 10.6 多元化:一个实例多元化:一个实例 10.7 无风险借贷无风险借贷 10.8 市场均衡市场均衡 10.9 期望收益与风险之间的关系期望收益与风险之间的关系 (CAPM))本章小结本章小结 2/2/2023310.1 单一证券单一证券 单一证券的
2、特征,特别是:期望收益单个证券的期望收益可以简单地以过去一段时期从这一证券所获得的平均收益来表示。方差和标准差用来评价证券收益的变动程度。协方差和相关系数用来度量两种证券收益之间的相互关系2/2/2023410.2.1 10.2.1 期望收益和方差期望收益和方差 期望收益 方差 标准差TiRRiTVar1211TiRRiTVarSD1211TiiRTR112/2/2023510.2.2 10.2.2 协方差和相关系数协方差和相关系数当衡量两个证券的收益之间的相关性及其相关程度时,我们感兴趣的特征指标是:协方差相关系数TiBBiAAiBAABRRRRRRTCov111,RRRRRRBABABAA
3、BSDSDCovCorr,2/2/2023610.2 10.2 期望收益、方差和协方差期望收益、方差和协方差 考虑下列两种风险资产世界,每种经济状况出现的概率都是 1/4 。期望收益、方差与标准差期望收益、方差与标准差协方差与相关系数2/2/2023910.2 10.2 期望收益、方差和协方差期望收益、方差和协方差协方差的含义如果两个公司的股票收益正相关,则它们的协方差为正值如果两个公司的股票收益负相关,则它们的协方差为负值如果两个公司的股票收益没有相关,则它们的协方差等于零两个变量的先后并不重要。也就是说,A和A的协方差等于A和A的协方差相关系数的含义如果相关系数为正,我们说两个变量之间为正
4、相关如果相关系数为负,我们说两个变量之间为负相关如果相关系数为零,我们说两个变量之间为没有相关相关系数总是界于1和1之间两种资产收益之间的相关系数等于 1、1和0的情况,即完全正相关、完全负相关和完全不相关2/2/2023102/2/20231110.3 10.3 投资组合的收益与风险投资组合的收益与风险设想一个投资者已经估计出每个证券的期望收益、标准差和这些证券两两之间的相关系数,那么投资者应该如何选择证券构成最佳的投资组合(portfolio)呢?显然,投资者应该选择一个具有高期望收益、低标准差的投资组合每个证券的期望收益与由这些证券构成的投资组合的期望收益之间的相互关系每个证券的标准差、
5、这些证券之间的相关系数与由这些证券构成的投资组合的标准差之间的相互关系仍然以上述例子为例来说明。2/2/20231210.3 投资组合的收益和风险投资组合的收益和风险组合的期望收益构成组合的各个证券的期望收益的加权平均值组合的方差和标准差投资组合的方差取决于组合中各种证券的方差和每两种证券之间的协方差BBAAPrwrwr+22,2222BBBABAAAPXXXX+2/2/20231310.3 投资组合的收益和风险投资组合的收益和风险在证券方差给定的情况下,如果两种证券收益之间相互关系或协方差为正,组合的方差就上升;如果两种证券收益之间的相互关系或协方差为负,组合的方差就下降投资组合多元化的效应
6、比较投资组合的标准差和各个证券的标准差具有的意义各个证券标准差的加权平均数:wAA+wBB由于投资组合多元化效应的作用,投资组合的标准差一般小于组合中各个证券标准差的加权平均数当AB=+1时,投资组合收益的标准差正好等于组合中各个证券的收益的标准差的加权平均数2/2/20231410.3 投资组合的收益和风险投资组合的收益和风险当由两种证券构成投资组合时,只要AB1,投资组合的标准差就小于这两种证券各自的标准差的加权平均数,也就是投资组合多元化的效应就会发生作用组合的扩展多种资产构成的组合在由多种证券构成的投资组合中,只要组合中两两证券收益之间的相关系数小于1,组合的标准差一定小于组合中各种证
7、券的标准差的加权平均数最近10年期间标准普尔500指数和其中一些重要证券的标准差比较表中所有证券的标准差都大于标准普尔500指数的标准差10.4 两种资产组合的有效集2/2/202316不同相关不同相关 性的两种证券组合性的两种证券组合 Slowpokereturn Supertech=-0.1639=1.0=-1.0关系取决于相关系数-1.0 r 0,弓型的曲线可能出现,也可能不出现从最小方差组合至弓形曲线右端的这段曲线被称为“有效集”(efficient Set)或“有效边界”(efficient frontier)一对证券之间只存在一个相关系数,相关系数愈低,曲线愈弯曲。当相关系数逼近1
8、时,曲线的弯曲度最大。当相关系数等于1时,结果可能令人惊奇,但实际上这种结果几乎不可能发生2/2/20231910.5 10.5 多种资产组合的有效集多种资产组合的有效集两种资产组合两种资产组合不同投资比例形成的有效集是一条曲线不同投资比例形成的有效集是一条曲线多种资产组合多种资产组合不同数量投资形成的组合不同数量投资形成的组合不同投资比例形成的组合不同投资比例形成的组合不同数量、不同投资比例形成的组合不同数量、不同投资比例形成的组合当只有两种证券构成投资组合时,所有的各种当只有两种证券构成投资组合时,所有的各种组合都位于一条弓型曲线之中组合都位于一条弓型曲线之中当多种证券构成投资组合时,所有
9、的各种组合当多种证券构成投资组合时,所有的各种组合都位于一个区域之中都位于一个区域之中2/2/20232010.5 10.5 多种资产组合的有效集多种资产组合的有效集 2/2/20232110.5 10.5 多种资产组合的有效集多种资产组合的有效集 给定机会集,我们可以找出最小方差组合 .收益 P最小方差组合2/2/202322 最小方差组合上方的机会集部分是有效边界 10.5 10.5 多种资产组合的有效集多种资产组合的有效集收益 P最小方差组合有效边界2/2/202323多种资产组合的方差和标准差多种资产组合的方差和标准差 应用矩阵法对N种资产组合的方差及其标准差的计算:2/2/20232
展开阅读全文