书签 分享 收藏 举报 版权申诉 / 11
上传文档赚钱

类型1994年普通高等学校招生全国统一考试数学试题含答案(理).pdf

  • 上传人(卖家):副主任
  • 文档编号:499956
  • 上传时间:2020-05-01
  • 格式:PDF
  • 页数:11
  • 大小:493.57KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《1994年普通高等学校招生全国统一考试数学试题含答案(理).pdf》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    1994 普通高等学校 招生 全国 统一 考试 数学试题 答案 下载 _历年真题_高考专区_数学_高中
    资源描述:

    1、 1994 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 数学(理工农医类) 本试卷分第卷(选择题)和第卷(非选择题)两部分共 150 分,考试时间 120 分钟 第卷第卷(选择题共选择题共 65 分分) 一、选择题一、选择题:本大题共本大题共 15 小题小题;第第(1)(10)题每小题题每小题 4 分分,第第(11)(15)题每小题题每小题 5 分分, 共共 65 分分,在每小题给出的四个选项中在每小题给出的四个选项中,只有一项是符合题目要求的只有一项是符合题目要求的 奎屯 王新敞 新疆 (1) 设全集 I=0,1,2,3,4,集合 A=0,1,2,3,集合 B=2,3,4,

    2、则BA ( ) (A) 0 (B) 0,1 (C) 0,1,4 (D) 0,1,2,3,4 (2) 如果方程 x2+ky2=2 表示焦点在 y 轴上的椭圆,那么实数 k 的取值范围是 ( ) (A) (0,+) (B) (0,2) (C) (1,+) (D) (0,1) (3) 极坐标方程 = 4 cos所表示的曲线是 ( ) (A) 双曲线 (B) 椭圆 (C) 抛物线 (D) 圆 (4) 设是第二象限的角,则必有 ( ) (A) 2 ctg 2 tg (B) 2 ctg 2 tg (C) 2 cos 2 sin (D) 2 cos 2 sin (5) 某种细菌在培养过程中,每 20 分钟分

    3、裂一次(一个分裂为两个)经过 3 小时,这种 细菌由 1 个可繁殖成 ( ) (A) 511 个 (B) 512 个 (C) 1023 个 (D) 1024 个 (6) 在下列函数中,以 2 为周期的函数是 ( ) (A) y=sin2x+cos4x (B) y=sin2xcos4x (C) y=sin2x+cos2x (D) y=sin2xcos2x (7) 已知正六棱台的上、下底面边长分别为 2 和 4,高为 2,则其体积为 ( ) (A) 323 (B) 283 (C) 243 (D) 203 (8) 设 F1和 F2为双曲线 4 2 x y2=1 的两个焦点,点 P 在双曲线上且满足F

    4、1PF2=90 , 则F1PF2的面积是 ( ) (A) 1 (B) 2 5 (C) 2 (D) 5 (9) 如果复数 z 满足z+i+zi=2,那么z+i+1的最小值是 ( ) (A) 1 (B) 2 (C) 2 (D) 5 (10) 有甲、乙、丙三项任务,甲需 2 人承担,乙、丙各需 1 人承担从 10 人中选派 4 人承担这三项任务,不同的选法共有 ( ) (A) 1260 种 (B) 2025 种 (C) 2520 种 (D) 5040 种 (11) 对于直线 m、n 和平面、,的一个充分条件是 ( ) (A) mn,m,n (B) mn,=m,n (C) mn,n,m (D) mn,

    5、m,n (12) 设函数 f(x)=1 2 1x(1x0),则函数 y=f 1(x)的图像是 ( ) (13) 已知过球面上 A、B、C 三点的截面和球心的距离等于球半径的一半,且 AB=BC=CA=2,则球面面积是 ( ) (A) 9 16 (B) 3 8 (C) 4 (D) 9 64 (14) 函数 y=arccos(sinx) 3 2 3 x的值域是 ( ) (A) 6 5 6 , (B) 6 5 0 , (C) 3 2 3 , (D) 3 2 6 , (15) 定义在(,+)上的任意函数 f(x)都可以表示成一个奇函数 g(x)和一个偶函数 h(x)之和,如果 f(x)=lg(10x+

    6、1),x(,+),那么 ( ) (A) g(x)=x,h(x)=lg(10x+10 x+2) (B) g(x)= 2 1 lg(10x+1)+x,h(x)= 2 1 lg(10x+1)x (C) g(x)= 2 x ,h(x)=lg(10x+1) 2 x (D) g(x)= 2 x ,h(x)=lg(10x+1)+ 2 x 第卷第卷(非选择题共非选择题共 85 分分) 二、填空题二、填空题 (本大题共本大题共 5 小题小题,共共 6 个个空格空格;每空格每空格 4 分分,共共 24 分分把答案填在题中横把答案填在题中横 线上线上) (16) 在(3x)7的展开式中,x5的系数是 奎屯 王新敞

    7、新疆 (用数字作答) (17) 抛物线 y2=84x 的准线方程是 , 圆心在该抛物线的顶点且与其 准线相切的圆的方程是 奎屯 王新敞 新疆 (18) 已知 sin +cos = 5 1 ,(0,),则 ctg的值是_ 奎屯 王新敞 新疆 (19) 设圆锥底面圆周上两点 A、B 间的距离为 2,圆锥顶点到直线 AB 的距离为3, AB 和圆锥的轴的距离为 1,则该圆锥的体积为_ 奎屯 王新敞 新疆 (20) 在测量某物理量的过程中,因仪器和观察的误差,使得 n 次测量分别得到 a1, a2,an,共 n 个数据,我们规定所测量物理量的“最佳近似值” a 是这样一个量:与其他 近似值比较,a 与

    8、各数据的差的平方和最小依此规定,从 a1,a2,an推出的 a= 奎屯 王新敞 新疆 三、解答题三、解答题(本大题共本大题共 5 小题小题,共共 61 分分;解答应写出文字说明、证明过程或推演步骤解答应写出文字说明、证明过程或推演步骤) (21) (本小题满分 11 分) 已知 z=1+i (1)设=z2+3z4,求的三角形式; (2)如果i zz bazz = + + 1 1 2 2 ,求实数 a,b 的值 (22) (本小题满分 12 分) 已知函数 f(x)=tgx,x(0, 2 )若 x1,x2(0, 2 ),且 x1x2,证明 2 1 f(x1)+f(x2)f( 2 21 xx +

    9、) (23) (本小题满分 12 分) 如图,已知 A1B1C1ABC 是正三棱柱,D 是 AC 中点 (1)证明 AB1平面 DBC1; (2)假设 AB1BC1,求以 BC1为棱,DBC1与 CBC1为面的 二面角的度数 (24) (本小题满分 12 分) 已知直线 l 过坐标原点,抛物线 C 顶点在原点,焦点在 x 轴 正半轴上若点)0 , 1(A和点 B(0,8)关于 l 的对称点都在 C 上, 求直线 l 和抛物线 C 的方程 (25) (本小题满分 14 分) 设an是正数组成的数列,其前 n 项和为 Sn,并且对于所有 的自然数 n,an与 2 的等差中项等于 Sn与 2 的等比

    10、中项 (1)写出数列an的前 3 项; (2)求数列an的通项公式(写出推证过程); (3)令()N += + + n a a a a b n n n n n 1 1 2 1 ,求().lim 21 nbbb n n + 1994 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 数学试题(理工农医类)参考解答 一、选择题一、选择题(本题考查基本知识和基本运算本题考查基本知识和基本运算) 1 C 2 D 3 D 4 A 5 B 6 D 7 B 8 A 9 A 10 C 11C 12B 13D 14B 15C 二、填空题二、填空题(本题考查基本知识和基本运算本题考查基本知识和基本运算

    11、) 16189 17x=3,(x2)2+y2=1 18 4 3 19 3 22 20() n aaa n + 21 1 三、解答题三、解答题 21本小题考查共轭复数、复数的三角形式等基础知识及运算能力 解:(1)由 z1+i,有 =z2+3z4 =(1+i)2+3()i+14 =2i+3(1i)4=1i, 的三角形式是 + 4 5 sin 4 5 cos2i (2)由 z=1+i,有 ()() ()()111 11 1 2 2 2 2 + + = + + ii biai zz bazz = () () i iaba2+ () ()ibaa+=2 由题设条件知(a+2)(a+b)i=1i 根据复

    12、数相等的定义,得 =+ =+ 1)( 12 ba a 解得 = = . 2 , 1 b a 22本小题考查三角函数基础知识、三角函数性质及推理能力 证明: tgx1+tgx2= 2 2 1 1 cos sin cos sin x x x x + 21 2121 coscos sincoscossin xx xxxx+ = () 21 21 coscos sin xx xx + = () ()() 2121 21 coscos sin2 xxxx xx + + = x1,x2(0, 2 ),x1x2, 2sin(x1+x2)0,cos x1cosx20,且 0tg 2 21 xx + , 即 2

    13、 1 f(x1)+f(x2)f( 2 21 xx + ) 23本小题考查空间线面关系、正棱柱的性质、空间想 象能力和逻辑推理能力 (1)证明: A1B1C1ABC是正三棱柱, 四边形 B1BCC1是矩形 连结 B1C 交 BC1于 E,则 B1E=EC连结 DE 在AB1C 中,AD=DC,DEAB1 又 AB1平面 DBC1,DE平面 DBC1,AB1平面 DBC1 (2)解:作 DFBC,垂足为 F,则 DF面 B1BCC1,连结 EF,则 EF 是 ED 在平面 B1BCC1上的射影 AB1BC1, 由(1)知 AB1DE,DEBC1,则 BC1EF,DEF 是二面角的平面角 设 AC=

    14、1,则 DC= 2 1 ABC 是正三角形,在 RtDCF 中, DF=DCsinC= 4 3 ,CF=DCcosC= 4 1 取 BC 中点 GEB=EC,EGBC 在 RtBEF 中, EF2=BF GF,又 BF=BCFC= 4 3 ,GF= 4 1 , EF2= 4 3 4 1 ,即 EF= 4 3 tgDEF=1 4 3 4 3 = EF DF DEF=45 故二面角为 45 24本小题考查直线与抛物线的基本概念和性质,解析几何 的基本思想方法以及综合运用知识解决问题的能力 解法一:依题设抛物线 C 的方程可写为 y2=2px (p0), 且 x 轴和 y 轴不是所求直线,又 l 过

    15、原点,因而可设 l 的方程为 y=kx (k0) 设 A、B分别是 A、B 关于 l 的对称点,因而 AAl,直线 AA 的方程为 ()1 1 +=x k y 由、联立解得 AA与 l 的交点 M 的坐标为 + + 11 1 22 k k k , 又 M 为 AA的中点,从而点 A的坐标为 x A= 1 1 1 1 1 2 2 2 2 + =+ + k k k , y A= 1 2 0 1 2 22 + =+ + k k k k 同理得点 B的坐标为 x B= 1 16 2 +k k , y B= () 1 18 2 2 + k k 又 A、B均在抛物线 y2=2px(p0)上,由得 1 1

    16、2 1 2 2 2 2 2 + = + k k p k k ,由此知 k1, 即 1 2 4 2 = k k p 同理由得 () 1 16 2 1 18 2 2 2 2 + = + k k p k k 即 () ()kk k p 1 12 2 2 2 + = 从而 1 2 4 2 k k = () ()kk k 1 12 2 2 2 + , 整理得 k2k1=0 解得. 2 51 2 51 21 = + =kk, 但当 2 51 =k时,由知0 5 5 = A x, 这与 A在抛物线 y2=2px(p0)上矛盾,故舍去 2 51 2 =k 设 2 51+ =k,则直线 l 的方程为xy 2 5

    17、1+ = 将 2 51+ =k代入,求得 5 52 =p 所以直线方程为 xy 2 51+ = 抛物线方程为 xy 5 54 2 = 解法二:设点 A、B 关于 l 的对称点分别为 A(x1、y1)、B(x2,y2),则 |OA|=|OA|=1,|OB|=|OB|=8 设由 x 轴正向到 OB的转角为,则 x2=8cos,y2=8sin 因为 A、B为 A、B 关于直线 l 的对称点,而BOA 为直角,故BOA为直角,因此 x1=cos 2 =sin,y1=sin 2 =cos, 由题意知 x10,x20,故为第一象限角 因为 A、B都在抛物线 y2=2px 上,将、代入得 cos2=2psi

    18、n,64sin2=2p8cos 8sin3=cos3, 2sin=cos, 解得 5 2 cos 5 1 sin=, 将 5 2 cos 5 1 sin=,代入 cos2=2psin得 5 52 sin2 cos 2 = p, 抛物线 C 的方程为xy 5 54 2 = 因为直线 l 平分BOB,故 l 的斜率 += += 4222 1 tgtgk 2 51 sin1 cos 2 cos1 2 sin + = = + + = 直线 l 的方程为xy 2 15 + = 25本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析 问题与解决问题的能力 解:(1)由题意,当 n=1

    19、时有 1 1 2 2 2 S a = + ,S1=a1, 1 1 2 2 2 a a = + , 解得 a1=2 当 n=2 时有 2 2 2 2 2 S a = + ,S2=a1+ a2,a1=2 代入,整理得 (a22)2=16 由 a20,解得 a2=6 当 n=3 时有 3 3 2 2 2 S a = + ,S3=a1+ a2+ a3,将 a1=2,a2=6 代入,整理得 (a32)2=64 由 a30,解得 a3=10 故该数列的前 3 项为 2,6,10 (2)解法一:由(1)猜想数列an有通项公式 an =4n2 下面用数学归纳法证明数列 an 的通项公式是 an =4n2 (n

    20、N) 当 n=1 时,因为 412=2,又在(1)中已求出 a1=2,所以上述结论成立 假设 n=k 时结论成立,即有 ak=4k2由题意,有 k k S a 2 2 2 = + , 将 ak=4k2 代入上式,得 2k= k S2,解得 Sk=2k2 由题意,有 1 1 2 2 2 + + = + k k S a ,Sk+1=Sk+ak+1, 将 Sk=2k2代入,得 2 1 2 2 + +k a =2(ak+1+2k2),整理得 2 1+k a4 ak+1+416 k2=0 由 ak+10,解得 ak+1=2+4k所以 ak+1=2+4k=4(k+1)2 这就是说,当 n=k+1 时,上述

    21、结论成立 根据、,上述结论对所有的自然数 n 成立 解法二:由题意,有()NnS a n n = + 2 2 2 ,整理得 Sn= 8 1 (an+2)2, 由此得 Sn+1 = 8 1 (an+1+2)2, an+1= Sn+1Sn = 8 1 (an+1+2)2(an+2)2, 整理得(an+1+ an)( an+1an4)=0, 由题意知 an+1+an0,an+1an=4 即数列 an 为等差数列,其中 a1=2,公差 d=4an =a1+(n1)d=2+4(n1), 即通项公式为 an =4n2 (3)解:令 cn=bn1,则 += + + 2 2 1 1 1 n n n n n a a a a c + + + =1 12 12 1 12 12 2 1 n n n n 12 1 12 1 + = nn , b1+b2+bnn=c1+c2+cn = + + + 12 1 12 1 5 1 3 1 3 1 1 nn 12 1 1 + = n ()1 12 1 1limlim 21 = + =+ n nbbb n n n

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:1994年普通高等学校招生全国统一考试数学试题含答案(理).pdf
    链接地址:https://www.163wenku.com/p-499956.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库