二次函数背景下的线段最值问题课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二次函数背景下的线段最值问题课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 背景 线段 问题 课件
- 资源描述:
-
1、漳州康桥学校九年级 吴瑕(2015漳州卷第漳州卷第25题)题)如图,抛物线 与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题(1)填空:点C的坐标为(,),点D的坐标为(,);(2)设点P的坐标为(a,0),当|PDPC|最大时,求a的值并在图中标出点P的位置;322xxy 如图,抛物线 与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作 MN/y轴交直线BC于点N,求线段MN的最大值;cbxxy2(2016漳州卷第漳州卷第24题)题)学习目标学习目标 知识目标:知识目标:掌握几何中的几个重
2、要定理及二次函数的有关知识,根据问题建构数学模型,解决二次函数背景下的线段和、差等最值问题。能力目标能力目标:通过观察、分析、对比等方法,提高学生分析问题,解决问题的能力,进一步强化分类归纳综合的思想,提高综合能力。情感目标:情感目标:通过自己的参与和教师的指导,体会及感悟化归与转化、数形结合、数学建模等数学思想方法,享受学习数学的快乐,提高应用数学的能力。l模型一已知:如图,A(-1,0),B(3,0),C(0,3),抛物线经过点A、B、C,抛物线的顶点为D求解析式和抛物线的顶点D;cbxaxy:2设二次函数的解析式为解3c2b-1a:30390300301解得得代入将ccbacba:,C,
3、B,A413222xxxy41,32:2,Dxxy顶点解析式为模型应用模型应用模型应用模型应用(2)点 P 在对称轴上,PA+PC取最小值时,求点P的坐标;变式:点P在对称轴上,PAC周长最小,求点P的坐标;【思维点拨】要使【思维点拨】要使PAC的的周长最小周长最小,已知已知AC为为定值定值,只需求一点只需求一点P使得使得PAPC最最小即可小即可步骤归纳:1)找对称点2)连线并求直线解析式3)求点坐标P模型二:lABP 在 PAB中 P A-P B ABPA-PB=AB PA-PBPA-PB探究二探究二问题:在直线l上,找出一点P,使|PAPB|的值最大。基本解法:使A、B、P三点共线 基本原
4、理:三角形两边之差小于第三边 基本思想:转化(化折为直)模型应用模型应用(3)点P在对称轴上,|PAPC|最大,求点P的坐标;分析:第一步,应用模型 找到点P的位置;第二步,求直线AC的解析式;第三步,将P点横坐标代入直线BC的解析式求出其纵坐标。变式训练变式训练(4)点P在对称轴上,|PAPC|最小,求点P的坐标;分析:第一步,找点P。要使|PAPC|最小,只要PA=PC即可,由线段垂直平分线的逆定理可知:点P在线段AC的垂直平分线上,因此线段AC垂直平分线与对称轴的交点即为所求的点P。第二步,解析法或几何法求点P的坐标。变式训练变式训练 (5)点P在线段BC上,PA取最小值时,求点P的坐标
展开阅读全文