书签 分享 收藏 举报 版权申诉 / 43
上传文档赚钱

类型《同角三角函数的基本关系》三角函数(教学课件).pptx

  • 上传人(卖家):晟晟文业
  • 文档编号:4994196
  • 上传时间:2023-01-31
  • 格式:PPTX
  • 页数:43
  • 大小:1.24MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《同角三角函数的基本关系》三角函数(教学课件).pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    同角三角函数的基本关系 教学课件 三角函数 基本 关系 教学 课件
    资源描述:

    1、-1-三角函数三角函数首页课前篇自主预习同角三角函数的基本关系式1.填写下表,你能从中发现同一个角的三角函数值之间有什么关系?一二课前篇自主预习2.填空同角的三角函数基本关系(1)平方关系:同一个角的正弦、余弦的平方和等于1,即sin2+cos2=1.(2)商数关系:同一个角的正弦、余弦的商等于这个角的正切,一二课前篇自主预习3.做一做(1)sin22 019+cos22 019=()A.0B.1C.2 019D.2 019(2)若sin+cos=0,则tan=.答案:(1)B(2)-14.已知sin(或cos)的值,能否求出cos(或sin),tan 的值?已知sin cos 的值,怎样求出

    2、sin cos 的值?提示:利用两种关系式的变形可以解决上述问题.一二课前篇自主预习一二二、同角三角函数基本关系式的变形1.平方关系sin2+cos2=1的变形(1)sin2=1-cos2;(2)cos2=1-sin2;(3)1=sin2+cos2;(4)(sin+cos)2=1+2sin cos;(5)(sin-cos)2=1-2sin cos.(1)sin=tan cos;课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练利用同角三角函数关系求值利用同角三角函数关系求值角度1已知某个三角函数值,求其余三角函数值分析:已知角的正弦值或余弦值,求其他三角函数值,应先判断三角函数值的符号,

    3、然后根据平方关系求出该角的正弦值或余弦值,再利用商数关系求该角的正切值.课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练反思感悟反思感悟 已知某个三角函数值求其余三角函数值的步骤第一步:由已知三角函数的符号,确定其角终边所在的象限;第二步:依据角的终边所在象限分类讨论;第三步:利用同角三角函数关系及其变形公式,求出其余三角函数值.课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练角度2已知tan,求关于sin 和cos 齐次式的值例例2已知tan=2,则(3)4sin2-3sin cos-5cos2=.分析:注意到所求式子都

    4、是关于sin、cos 的分式齐次式(或可化为分式齐次式),将其分子、分母同除以cos 的整数次幂,把所求值的式子用tan 表示,将tan=2整体代入求其值.课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练反思感悟反思感悟 已知tan,求关于sin 和cos 齐次式的值的基本方法课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练角度3利用sin+cos,sin-cos 与sin cos 三者之间的关系求值例例3已知sin+cos=,(0,),求tan 的值.分析:要求tan 的值,只需求得sin,cos 的值.而由已知条件si

    5、n+cos=,(0,),结合sin2+cos2=1,求得2sin cos 的值,进而求得sin-cos 的值,从而得到sin,cos 的值,问题得解.课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练反思感悟反思感悟 1.由(sin+cos)2=1+2sin cos,(sin-cos)2=1-2sin cos 可知如果已知sin+cos,sin-cos,sin cos 三个式子中任何一个的值,那么就可以利用平方关系求出其余的两个.2.sin cos 的符号的判定方法:(1)sin-cos 的符号的判定方法:由三角函数的定义知,当的终

    6、边落在直线y=x上时,sin=cos,即sin-cos=0;当的终边落在直线y=x的上半平面区域内时,sin cos,即sin-cos 0;当的终边落在直线y=x的下半平面区域内时,sin cos,即sin-cos-cos,即sin+cos 0;当的终边落在直线y=-x的下半平面区域内时,sin-cos,即sin+cos 0,cos 0,因此解是唯一的.课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练防范措施 在利用sin cos,sin cos 之间的关系解题时,往往易忽略角的取值范围造成增根或丢根,在已知sin cos 的值求sin+cos 或sin-cos 的值时需开方,因此要由

    7、角的取值范围确定取“+”还是“-”.课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练答案:B 课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练答案:C 课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练答案:C 答案:sin 课堂篇探究学习探究一探究二探究三核心素养思维辨析随堂演练5.求证:2(1-sin)(1+cos)=(1-sin+cos)2.证法一左边=2-2sin+2cos-2sin cos=1+sin2+cos2-2sin cos+2(cos-sin)=1+2(cos-sin)+(cos-sin)2=(1-sin+cos)2=右边.所以原式成立.证法二左边=2-2sin+2cos-2sin cos,右边=1+sin2+cos2-2sin+2cos-2sin cos=2-2sin+2cos-2sin cos.故左边=右边.所以原式成立.证法三令1-sin=x,cos=y,则(x-1)2+y2=1,即x2+y2=2x.故左边=2x(1+y)=2x+2xy=x2+y2+2xy=(x+y)2=右边.所以原式成立.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《同角三角函数的基本关系》三角函数(教学课件).pptx
    链接地址:https://www.163wenku.com/p-4994196.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库