《函数的图象》人教版2课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《函数的图象》人教版2课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的图象 函数 图象 人教版 课件
- 资源描述:
-
1、反比例函数的图象和性质的综合运用学习目标学习目标1.理解反比例函数的系数 k 的几何意义,并将其灵活 运用于坐标系中图形的面积计算中.(重点、难点)2.能够解决反比例函数与一次函数的综合性问题.(重 点、难点)3.体会“数”与“形”的相互转化,学习数形结合的思想 方法,进一步提高对反比例函数相关知识的综合运 用能力.(重点、难点)反比例函数的图象是什么?反比例函数的性质与 k 有怎样的关系?反比例函数的图象是双曲线 当 k 0 时,两条曲线分别位于第一、三象限,在每个象限内,y 随 x 的增大而减小;当 k 0 时,两条曲线分别位于第二、四象限,在每个象限内,y 随 x 的增大而增大.问题1
2、问题2 用待定系数法求反比例函数的解析式 已知反比例函数的图象经过点 A(2,6).(1)这个函数的图象位于哪些象限?y 随 x 的增大如 何变化?解:因为点 A(2,6)在第一象限,所以这个函数的图象位于第一、三象限;在每一个象限内,y 随 x 的增大而减小.1例1(2)点B(3,4),C(,),D(2,5)是否在这个 函数的图象上?122445解:设这个反比例函数的解析式为 ,因为点 A(2,6)在其图象上,所以有 ,解得 k=12.kyx62k因为点 B,C 的坐标都满足该解析式,而点 D的坐标不满足,所以点 B,C 在这个函数的图象上,点 D 不在这个函数的图象上.所以反比例函数的解析
3、式为 .12yx解:当 x=3时,y=2,的图象上,xAyAk,反比例函数的性质与 k 有怎样的关系?如果x1x2,那么 y1 和 y2 有怎样的函数的图象上?已知反比例函数的图象经过点 A(2,6).支交于点 F,连接 OF,易知,观察右图,可知2 x 3.我们就 k 0 的情况给出证明:SA=SB=SC D.y=k1x 和 .推理:QAO与QBO的设点 P 的坐标为(a,b),y=k1x 和 .反比例函数的性质与 k 有怎样的关系?SOMB=OMBD2=222=2,k+b=2,若点 P 是反比例函数图象上的一点,过点 P 分别向推理:QAO与QBO的提示:当反比例函数图象在第二、四象限时,
4、注意已知反比例函数 的图象经过点 A(2,3)(1)求这个函数的表达式;kyx解:反比例函数 的图象经过点 A(2,3),把点 A 的坐标代入表达式,得 ,kyx32k 解得 k=6.这个函数的表达式为 .6yx(2)判断点 B(1,6),C(3,2)是否在这个函数的 图象上,并说明理由;解:分别把点 B,C 的坐标代入反比例函数的解析 式,因为点 B 的坐标不满足该解析式,点 C 的坐标满足该解析式,所以点 B 不在该函数的图象上,点 C 在该函 数的图象上(3)当 3 x 0,当 x 0 时,y 随 x 的增大而减小,当 3 x 1 时,6 y 2.反比例函数图象和性质的综合(1)图象的另
5、一支位于哪个象限?常数 m 的取值范围 是什么?Oxy 如图,是反比例函数 图象的一支.根据图象,回答下列问题:5myx解:因为这个反比例函数图象的一 支位于第一象限,所以另一支 必位于第三象限.由因为这个函数图象位于第一、三象限,所以m50,解得m5.2例2(2)在这个函数图象的某一支上任取点 A(x1,y1)和 点B(x2,y2).如果x1x2,那么 y1 和 y2 有怎样的 大小关系?解:因为 m5 0,所以在这个函数图象的任一支 上,y 都随 x 的增大而减小,因此当x1x2时,y1y2.如图,是反比例函数 的图象,则 k 的值可以是 ()1 kyxA1 B3 C1 D0OxyB反比例
6、函数解析式中 k 的几何意义1.在反比例函数 的图象上分别取点P,Q 向 x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:4yx35123415xyOPP(2,2)Q(4,1)S1的值S2的值 S1与S2的关系猜想 S1,S2 与 k的关系4yx 4 4S1=S2S1=S2=k5432143232451QS1的值 S2的值S1与S2的关系猜想与 k 的关系P(1,4)Q(2,2)2.若在反比例函数 中也 用同样的方法分别取 P,Q 两点,填写表格:4yx4yx4 4S1=S2S1=S2=kyxOPQ由前面的探究过程,可以猜想:若点P是 图象上的任意一点,作 PA 垂直于 x
7、 轴,作 PB 垂直于 y 轴,矩形 AOBP 的面积与k的关系是S矩形 AOBP=|k|.xky yxOPS我们就 k 0 的情况给出证明:设点 P 的坐标为(a,b),AB点 P(a,b)在函数 的图象上,kyx ,即 ab=k.kba S矩形 AOBP=PBPA=ab=ab=k.若点 P 在第二象限,则 a0,若点 P 在第四象限,则 a0,bSBSC B.SASBSCC.SA=SB=SC D.SASC0)图像上的任意两点,PA,CD 垂直于 x 轴.设 POA 的面积为 S1,则 S1=;梯形CEAD 的面积为 S2,则 S1 与 S2 的大小关系是 S1 S2;POE 的面积 S3
8、和 S2 的大小关系是S2 S3.4yx2S1S2S3例4 如图所示,直线与双曲线交于 A,B 两点,P 是AB 上的点,AOC 的面积 S1、BOD 的面积 S2、POE 的面积 S3 的大小关系为 .S1=S2 S3解析:由反比例函数面积的不变性易知 S1=S2.PE 与双曲线的一支交于点 F,连接 OF,易知,SOFE=S1=S2,而 S3SOFE,所以 S1,S2,S3的大小关系为S1=S2 0b 0k1 0k2 0b 0 xyOxyO2合作探究合作探究k2 0b 0k1 0k2 0 xyOk1 0 xyO 函数 y=kxk 与 的图象大致是 ()0(kxkyD.xyOC.yA.yxB
展开阅读全文