(数学)122《组合(三)》教学课件(新人教A版选修23).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(数学)122《组合(三)》教学课件(新人教A版选修23).ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 组合三 122 组合 教学 课件 新人 选修 23 下载 _人教A版_数学_高中
- 资源描述:
-
1、1 1、组合定义、组合定义:一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素)个元素并成一并成一组组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的一个个元素的一个组合组合从从n个不同元素中取出个不同元素中取出m(mn)个元素的所有组合的个数个元素的所有组合的个数,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数组合数,用符号,用符号 表示表示.mnC2 2、组合数、组合数:3、组合数公式、组合数公式:(1)(2)(1)!mmnnmmAn nnnmCAm!()!mnnCm nm01.nC我们规定:1:mn mnnCC定理一个口袋内装有大
2、小相同的一个口袋内装有大小相同的7个白球和个白球和1个黑球个黑球 从口袋内取出从口袋内取出3个球,共有多少种取法?个球,共有多少种取法?从口袋内取出从口袋内取出3个球,使其中含有个球,使其中含有1 1个黑球,有个黑球,有多少种取法?多少种取法?从口袋内取出从口袋内取出3个球,使其中不含黑球,有多少个球,使其中不含黑球,有多少种取法?种取法?5638C 2127C 3537C解:解:(1)性质性质2 我们可以这样解释:我们可以这样解释:从口袋内的从口袋内的8个球中所取出的个球中所取出的3个球,可以分为个球,可以分为两类:一类两类:一类含有含有1个个黑球,一类不含黑球,一类不含有黑球因此根据分类计
3、数原理,有黑球因此根据分类计数原理,上述等式成立上述等式成立 我们发现:我们发现:38C27C37C为什么呢为什么呢CCmnmn1 :证明)!1()!1(!)!(!mnmnmnmn)!1(!)1(!mnmmnmnn)!1(!)1(mnmnmmn!)1(!)!1(mnmn.1Cmncccmnmnmn11性质性质2 注注:1 公式特征:下标相同而上标差公式特征:下标相同而上标差1的两个组合数的两个组合数之和,等于下标比原下标多之和,等于下标比原下标多1而上标与原组合数上标而上标与原组合数上标较大的相同的一个组合数较大的相同的一个组合数 2 此性质的作用:恒等变形,简化运算在今后学此性质的作用:恒等
4、变形,简化运算在今后学习习“二项式定理二项式定理”时,我们会看到它的主要应用时,我们会看到它的主要应用cccmnmnmn11例计算:例计算:329999(1);CC332898(2).2CCC16170012398991003100 C563828283838)(2CCCCC;11111)1(CCCCmnmnmnmn.21211)2(CCCCmnmnmnmn例例2 求证求证:.111111)1(CCCCCCmnmnmnmnmnmn .)()(2121111111)2(CCCCCCCCCCmnmnmnmnmnmnmnmnmnmn例例3、6本不同的书,按下列条件,各有多少种不同的分法;本不同的书,
5、按下列条件,各有多少种不同的分法;(1)分给甲、乙、丙三人,每人两本;)分给甲、乙、丙三人,每人两本;(2)分成三份,每份两本;)分成三份,每份两本;(3)分成三份,一份)分成三份,一份1本,一份本,一份2本,一份本,一份3本;本;(4)分给甲、乙、丙)分给甲、乙、丙3人,一人人,一人1本,一人本,一人2本,一人本,一人3本;本;(5)分给甲、乙、丙)分给甲、乙、丙3人,每人至少一本;人,每人至少一本;(6)分给)分给5个人,每人至少一本;个人,每人至少一本;(7)6本相同的书,分给甲乙丙三人,每人至少一本。本相同的书,分给甲乙丙三人,每人至少一本。练习:练习:(1)今有今有10件不同奖品件不
展开阅读全文