书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型(数学)122《组合(三)》教学课件(新人教A版选修23).ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4993688
  • 上传时间:2023-01-31
  • 格式:PPT
  • 页数:18
  • 大小:531.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(数学)122《组合(三)》教学课件(新人教A版选修23).ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 组合三 122 组合 教学 课件 新人 选修 23 下载 _人教A版_数学_高中
    资源描述:

    1、1 1、组合定义、组合定义:一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素)个元素并成一并成一组组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的一个个元素的一个组合组合从从n个不同元素中取出个不同元素中取出m(mn)个元素的所有组合的个数个元素的所有组合的个数,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数组合数,用符号,用符号 表示表示.mnC2 2、组合数、组合数:3、组合数公式、组合数公式:(1)(2)(1)!mmnnmmAn nnnmCAm!()!mnnCm nm01.nC我们规定:1:mn mnnCC定理一个口袋内装有大

    2、小相同的一个口袋内装有大小相同的7个白球和个白球和1个黑球个黑球 从口袋内取出从口袋内取出3个球,共有多少种取法?个球,共有多少种取法?从口袋内取出从口袋内取出3个球,使其中含有个球,使其中含有1 1个黑球,有个黑球,有多少种取法?多少种取法?从口袋内取出从口袋内取出3个球,使其中不含黑球,有多少个球,使其中不含黑球,有多少种取法?种取法?5638C 2127C 3537C解:解:(1)性质性质2 我们可以这样解释:我们可以这样解释:从口袋内的从口袋内的8个球中所取出的个球中所取出的3个球,可以分为个球,可以分为两类:一类两类:一类含有含有1个个黑球,一类不含黑球,一类不含有黑球因此根据分类计

    3、数原理,有黑球因此根据分类计数原理,上述等式成立上述等式成立 我们发现:我们发现:38C27C37C为什么呢为什么呢CCmnmn1 :证明)!1()!1(!)!(!mnmnmnmn)!1(!)1(!mnmmnmnn)!1(!)1(mnmnmmn!)1(!)!1(mnmn.1Cmncccmnmnmn11性质性质2 注注:1 公式特征:下标相同而上标差公式特征:下标相同而上标差1的两个组合数的两个组合数之和,等于下标比原下标多之和,等于下标比原下标多1而上标与原组合数上标而上标与原组合数上标较大的相同的一个组合数较大的相同的一个组合数 2 此性质的作用:恒等变形,简化运算在今后学此性质的作用:恒等

    4、变形,简化运算在今后学习习“二项式定理二项式定理”时,我们会看到它的主要应用时,我们会看到它的主要应用cccmnmnmn11例计算:例计算:329999(1);CC332898(2).2CCC16170012398991003100 C563828283838)(2CCCCC;11111)1(CCCCmnmnmnmn.21211)2(CCCCmnmnmnmn例例2 求证求证:.111111)1(CCCCCCmnmnmnmnmnmn .)()(2121111111)2(CCCCCCCCCCmnmnmnmnmnmnmnmnmnmn例例3、6本不同的书,按下列条件,各有多少种不同的分法;本不同的书,

    5、按下列条件,各有多少种不同的分法;(1)分给甲、乙、丙三人,每人两本;)分给甲、乙、丙三人,每人两本;(2)分成三份,每份两本;)分成三份,每份两本;(3)分成三份,一份)分成三份,一份1本,一份本,一份2本,一份本,一份3本;本;(4)分给甲、乙、丙)分给甲、乙、丙3人,一人人,一人1本,一人本,一人2本,一人本,一人3本;本;(5)分给甲、乙、丙)分给甲、乙、丙3人,每人至少一本;人,每人至少一本;(6)分给)分给5个人,每人至少一本;个人,每人至少一本;(7)6本相同的书,分给甲乙丙三人,每人至少一本。本相同的书,分给甲乙丙三人,每人至少一本。练习:练习:(1)今有今有10件不同奖品件不

    6、同奖品,从中选从中选6件分成三份件分成三份,二份各二份各1件件,另一份另一份4件件,有多少种分法有多少种分法?(2)今有今有10件不同奖品件不同奖品,从中选从中选6件分给甲乙丙三人件分给甲乙丙三人,每每人二件有多少种分法人二件有多少种分法?解解:(1)(2)641111062123150CCCC62221064218900CCCC例例4、某城新建的一条道路上有、某城新建的一条道路上有12只路灯,为了节只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭

    7、的方法共有(盏灯,可以熄灭的方法共有()(A)种(种(B)种种(C)种种 (D)种种38C38A39C311C三、混合问题,先三、混合问题,先“组组”后后“排排”例例5 对某种产品的对某种产品的6件不同的正品和件不同的正品和4件不同的次品件不同的次品,一一进行测试,至区分出所有次品为止,若所有次一一进行测试,至区分出所有次品为止,若所有次品恰好在第品恰好在第5次测试时全部发现次测试时全部发现,则这样的测试方法则这样的测试方法有种可能?有种可能?解:由题意知前解:由题意知前5次测试恰有次测试恰有4次测到次品,且第次测到次品,且第5次测试是次品。故有:次测试是次品。故有:种可能。种可能。57644

    8、1634ACC练习:练习:1、某学习小组有、某学习小组有5个男生个男生3个女生,从中选个女生,从中选3名名男生和男生和1名女生参加三项竞赛活动,每项活动至少有名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法人参加,则有不同参赛方法_种种.解:采用先组后排方法解:采用先组后排方法:312353431080CCCA2、3 名医生和名医生和 6 名护士被分配到名护士被分配到 3 所学校为学生所学校为学生体检体检,每校分配每校分配 1 名医生和名医生和 2 名护士名护士,不同的分配方不同的分配方法共有多少种法共有多少种?解法一:先组队后分校(先分堆后分配)解法一:先组队后分校(先分堆后

    9、分配)223364540C C A解法二:依次确定到第一、第二、第三所学校去的医解法二:依次确定到第一、第二、第三所学校去的医生和护士生和护士.5401)()(24122613CCCC四、分类组合四、分类组合,隔板处理隔板处理例例6、从从6个学校中选出个学校中选出30名学生参加数学竞赛名学生参加数学竞赛,每每校至少有校至少有1人人,这样有几种选法这样有几种选法?分析分析:问题相当于把个问题相当于把个30相同球放入相同球放入6个不同盒子个不同盒子(盒盒子不能空的子不能空的)有几种放法有几种放法?这类问可用这类问可用“隔板法隔板法”处理处理.解解:采用采用“隔板法隔板法”得得:5294095C练习

    10、:练习:1、将、将8个学生干部的培训指标分配给个学生干部的培训指标分配给5个不同的班级,个不同的班级,每班至少分到每班至少分到1个名额,共有多少种不同的分配方法?个名额,共有多少种不同的分配方法?2、从一楼到二楼的楼梯有、从一楼到二楼的楼梯有17级,上楼时可以一步走级,上楼时可以一步走一级,也可以一步走两级,若要求一级,也可以一步走两级,若要求11步走完,则有步走完,则有多少种不同的走法?多少种不同的走法?2、从、从6位同学中选出位同学中选出4位参加一个座谈会,要求张、王两人中位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为至多有一个人参加,则有不同的选法种数为 。32

    11、328778.()()A CCCC32328778.()()B CCCC32328778.CC CC C3218711.DC C C3、要从、要从8名男医生和名男医生和7名女医生中选名女医生中选5人组成一个医疗队,如果人组成一个医疗队,如果其中至少有其中至少有2名男医生和至少有名男医生和至少有2名女医生,则不同的选法种数名女医生,则不同的选法种数为(为()4、从、从7人中选出人中选出3人分别担任学习委员、宣传委员、体育委员,人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不都入选的不同选法种数共有(则甲、乙两人不都入选的不同选法种数共有()2353.AC A3353.2B C A35.C A233535.2D C AA1、把、把6个学生分到一个工厂的三个车间实习,每个车间个学生分到一个工厂的三个车间实习,每个车间2人,人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有法有 种种。99CD5、在如图、在如图7x4的方格纸上(每小方格均为正方形)的方格纸上(每小方格均为正方形)(1)其中有多少个矩形?)其中有多少个矩形?(2)其中有多少个正方形?)其中有多少个正方形?Thank you!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(数学)122《组合(三)》教学课件(新人教A版选修23).ppt
    链接地址:https://www.163wenku.com/p-4993688.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库