[工学]版本-哈工大版理论力学课件全套02.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《[工学]版本-哈工大版理论力学课件全套02.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工学 版本 哈工大 理论 力学 课件 全套 02
- 资源描述:
-
1、理论力学1理论力学2力系按作用线分布分为:平面力系、空间力系平面力系:作用线分布在同一平面内的力系。空间力系:作用线分布在不同平面内的力系。力系按作用线汇交情况分为汇交力系平行力系(力偶系是其中的特殊情况)一般力系(任意力系)31 1FR F2 F22 2FF2cos1F FRsin sin(180)一、平面汇交力系合成的几何法1、两个共点力的合成合力方向由正弦定理:理论力学由余弦定理:由力的平行四边形法则作图(左),也可用力的三角形来作图(右)。2-1平面汇交力系AFRF1F2FRAF2F1力三角形1800-理论力学4F3F2F1F4AF2F3FRabF1cdF4eaF2dF4ecF3FRF
2、1b各力矢与合力矢构成的多边形称为力多边形。用力多边形求合力的作图规则称为力的多边形法则。力多边形中表示合力矢量的边称为力多边形的封闭边。2、任意个共点力的合成力多边形:各分力矢首尾相连,组成一个不封闭的力多边形。封闭边表示合力的大小和方向。理论力学5理论力学61 i1 i结论:平面汇交力系可简化为一合力,其合力的大小与方向等于各分力的矢量和(几何和),合力的作用线通过汇交点。用矢量式表示为:FR F F2 Fn F3、平面汇交力系平衡的几何法平面汇交力系平衡的必要和充分条件是:该力系的合力等于零。FR F F2 Fn F 0上述方程的几何表达为:该力系的力多边形自行封闭。用几何方法求平面汇交
3、力系平衡时,要做出自行封闭的力多边形,一般只适合三个力的平衡问题。OE EA24 cmtan arctan 140sin180 FB F 750N理论力学例图示是汽车制动机构的一部分。司机踩到制动蹬上的力F=212 N,方向与水平面成=450角。当平衡时,DA铅直,BC水平,试求拉杆BC所受的力。已知EA=24cm,DE=6cm点E在铅直F24cm6cmACBD线DA上,又B,C,D都是光滑铰链,O机构的自重不计。EAOFFDB E FBD7解:取制动蹬ABD作为研究对象,并画出受力图。作出相应的力多边形。F FD FBDE 6OE 2414由力三角形图可得sin FB tan 0.577理论
4、力学8取分离体画受力图当碾子刚离地面时FA=0,拉力F最大,这时拉力F和自重P及约束力FB构成一平衡力系。由平衡的几何条件,力多边形封闭,故F Ptan又由几何关系:Pcosr2(rh)2rhF=11.5kN,FB=23.1kN所以例已知压路机碾子重P=20kN,r=60cm,欲拉过h=8cm的障碍物。求在中心作用的水平力F的大小和碾子对障碍物的压力。解:选碾子为研究对象OPABhFr FAFBFBFP 理论力学9由作用力和反作用力的关系,碾子对障碍物的压力等于23.1kN。几何法解题步骤:选研究对象;作出受力图;作力多边形;用几何方法求出未知数。几何法解题不足:一般只适合三个力时的平衡;做出
5、的封闭多边形为三角形,可用三角形的正弦和余弦定理求解;不能表达各个量之间的函数关系。下面我们研究力系合成与平衡的另一种方法:解析法。F Fx Fy,cosb 理论力学10反之,已知投影可求力的大小和方向已知力可求投影Fx=F cosqFy=F cosbF sinqFx二、平面汇交力系合成的解析法1、力的投影yFyOq分力:Fx投影:FxFyAb22力的大小Fx FyF Fcosq 方向余弦方向:cos(FR R,j),i),cos(F理论力学112、合力投影定理合力投影定理:合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。若以 Fx ,Fy 表示力沿直角坐标轴的正交分量,则:F Fxi
6、 Fy j所以:FRx FixFRy Fiy合力的大小:作用点:FRxFRFRyFR为该力系的汇交点FR (F ix)2(F iy)2而各分力 Fx Fxi,Fy Fy j力的分解 F Fx Fycos 0.7548cos 0.6556理论力学12112 2FR FRx FRy 171.3NFRxFRFRyFR 40.99,49.01例已知:图示平面共点力系;求:此力系的合力。解:用解析法FRx Fix F cos30 F2cos60 F3cos45 F4 cos45 129.3NFRy Fiy F sin30 F2sin60 F3sin45 F4 sin45 112.3NyF1F2F3F4x
7、300450600450FR理论力学13平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上投影的代数和分别等于零。3、平面汇交力系的平衡方程平面汇交力系平衡的必要和充分条件是:该力系的合力等于零。2 2F ix 0 ,F iy 0必有FBA BC 11.35kN F14例已知:F=3kN,l=1500mm,h=200mm,忽略自重;求:平衡时,压块C对工件与地面的压力,AB杆受力。解:AB、BC杆为二力杆,取销钉B为对象。0FxFBA cos FBC cos 0FBA FBC0 FBA sin FBC sin F 0F2sinq得Fy解得理论力学理论力学15选压块C为对象0FCB cosF
8、Cx 011.25kNFl2hcot F2FCx Fx解得0Fy解得F CBsinq FCy 0F Cy 1.5kN列平衡方程理论力学16例如图所示,重物G=20kN,用钢丝绳挂在支架的滑轮B上,钢丝绳的另一端绕在铰车D上。杆AB与BC铰接,并以铰链A,C与墙连接。如两杆与滑轮的自重不计并忽略摩擦和滑轮的大小,试求平衡时杆AB和BC所受的力。ABD3060CG解:取滑轮B为研究对象,忽略滑轮的大小,画受力图。xyB3060FBAF1FBC11F2Fx 0,FBA F cos 60 F2 cos 30 0Fy 0,FBC F cos 30 F2 cos 60 0解方程得杆AB和BC所受的力:FB
9、A 0.366G 7.321kNFBC 1.366G 27.32 kN当由平衡方程求得某一未知力的值为负时,表示原先假定的该力指向和实际指向相反。理论力学17理论力学182-2 平面力对点之矩 平面力偶MO(F)OhrFA一、力对点之矩(力矩)B力F与点O位于同一平面内,称为力矩作用面。点O称为矩心,点O到力作用线的垂直距离h 称为力臂。力对点之矩是一个代数量,它的绝对值等于力的大小与力臂的乘积,它的正负可按下法确定:力使物体绕矩心逆时针转动时为正,反之为负。移动效应_ 取决于力的大小、方向转动效应_取决于力矩的大小、转向力对物体可以产生理论力学19Mh MO(F)是代数量。MO(F)是影响转
10、动的独立因素。当F=0或h=0时,O(F)=0。单位N m或kNm。MO(F)=2AOB=F,2倍形面积。MO(F)F h力对点之矩+MO(F)OhrFABy理论力学20FFxFyxyOqxAMO(F)xFsinq yF cosq xFy yFx力矩的解析表达式i合力对坐标原点之矩MO(FR)(xiF iy yF ix)二、合力矩定理与力矩的解析表达式合力对某点之矩,等于所有各分力对同一点之矩的代数和。n(F (Fi1按力系等效概念,上式必然成立,且适用于任何有合力存在的力系。理论力学21rhO例已知Fn=1400N,齿轮的节圆(啮合圆)的半径 r=60mm,压力角=200,求力Fn对O点的矩
11、。MO(Fn)FnhFnrcos 78.93Nm按力矩的定义得根据合力矩定理,将力Fn分解为圆周力Ft 和径向力Fr,rOFnFrFtMO(Fn)MO(Fr)MO(Ft)MO(Ft)Fn cos r理论力学22理论力学23理论力学24理论力学25三、平面力偶及其性质由两个大小相等、方向相反且不共线的平行力组成的力系,称为力偶,记为(F,F)。力偶的两力之间的垂直距离d 称为力偶臂,力偶所在的平面称为力偶作用面。理论力学26大小:FR=F1+F2方向:平行于 F1、F2且指向一致作用点:C处1确定C点,由合力距定理MB(FR)MB(F)11FR F F2FR CB F ABAB ACCB 代入1
12、ACF2CB F性质1:力偶没有合力,本身又不平衡,是一个基本力学量。两个同向平行力的合力F2F1ABFFFR1FR2FRC理论力学27力偶无合力 FR=FF=01FFCBCACB CA1两个反向平行力的合力 大小:FR=F1F2方向:平行两力且与较大的相同作用点:C处 CB FCA F2F2F1ABCFRABCFF若CB=CA=CB+d 成立,且d0,必有CB即合力作用点在无穷远处,不存在合力。理论力学28MO(F)MO(F)F(xd)FxFd说明:M是代数量,有+、;F、d 都不独立,只有力偶矩 M=Fd 是独立量;M的值M=2 ABC;单位:N m由于O点是任取的M Fd+性质2:力偶对
13、其所在平面内任一点的矩恒等于力偶矩,而与矩心的位置无关,因此力偶对刚体的效应用力偶矩度量。ABOdCxFF理论力学29性质3:平面力偶等效定理作用在同一平面内的两个力偶,只要它的力偶矩的大小相等,转向相同,则该两个力偶彼此等效。=由上述证明可得下列两个推论:力偶可以在其作用面内任意移动,而不影响它对刚体的作用效应。只要保持力偶矩大小和转向不变,可以任意改变力偶中力的大小和相应力偶臂的长短,而不改变它对刚体的作用效应。理论力学30=理论力学31同平面内力偶等效定理证明理论力学32dF力偶的臂和力的大小都不是力偶的特征量,只有力偶矩才是力偶作用的唯一量度。今后常用如图所示的符号表示力偶。M为力偶的
14、矩。F=M=M理论力学33理论力学341M1 Fd1 F 3dM2 F2d2 F4dM1(F1,F1),M2(F2,F2)F F 3 F4F F 3F4M Fd(F 3 F4)d F 3d F4d M1 M2在同平面内的任意个力偶可以合成为一个合力偶,合力偶矩等于各个力偶矩的代数和。F2F2d2F1F3F3四、平面力偶系的合成和平衡F1 Fd1 4F4dFFd M理论力学35平面力偶系平衡的充要条件是:所有各力偶矩的代数和等于零。(力偶只能和力偶平衡)nMn Mi ii1即:M M1 M2 i0M即ABDM45lABMFBFAFB 300N理论力学36FB0.2m1m2 m3 m4 0FA F
15、B 300 N解:各力偶的合力偶矩为根据平面力偶系平衡方程有:600.2Mm1m2m3m44(15)60Nm由力偶只能与力偶平衡的性质,力FA与力FB组成一力偶。例在一钻床上水平放置工件,在工件上同时钻四个等直径的孔,每个钻头的力偶矩为 m1m2m3m415Nm求工件的总切削力偶矩和A 、B端水平约束力?12 F C C C(Nm)24 18 2F (Ncm)0.255F理论力学37例图示结构,已知M=800N.m,求A、C两点的约束力。F C 3137NMi 0 MAC M 02 22 2M AC F Cd F C解:注意到CB为二力构件,画受力图FA C F理论力学38解:1、AD为二力杆
16、。2、研究对象:整体MlFA F C 例图示杆系,已知M,l,求A、B处约束力。ACBDllMFAlFCM作用在AD杆上又如何?ACBDllMBC为二力杆FAlFCMlsin4502Ml理论力学3960o60oABCDM1M2例不计自重的杆AB与DC在C处为光滑接触,它们分别受力偶矩为M1与M2的力偶作用,转向如图。问M1与M2的比值为多大,结构才能平衡?解:取杆AB为研究对象画受力图。BACM1FAFC杆AB只受力偶的作用而平衡且C处为光滑面约束,则A处约束力的方位可定。FA=FC=F,AC=a Mi=0Fa-M1=0M1=Fa(1)理论力学40 Mi=0-0.5aF+M2=0M2=0.5
17、Fa(2)联立(1)(2)两式得:M1/M2=2取杆CD为研究对象。因C点约束力方位已定,则D点约束力方位亦可确定,画受力图。FD=FC=FFC60o60oABCM2DFD理论力学41理论力学42作用在刚体上的力可以平行移到同一刚体内任意一点,但必须同时附加一个力偶。附加力偶的力偶矩等于原来的力对新作用点的矩。力线平移定理2-3 平面任意力系的简化一、力线平移定理A力F力偶(F,F)BMA力系 F,F,FBFFFFA证 力FBF理论力学43d说明:力线平移定理揭示了力与力偶的关系:力 力+力偶;(例如一个力功丝时容易功坏螺纹或折断丝锥)力线平移的条件是附加一个力偶M,且M=F ;一个力和一个力
18、偶也可合成为一个力,即力线平移定理的反定理同样成立:力+力偶 力;力线平移定理是力系简化的理论基础。理论力学44理论力学45OxyijOxyFnF1F2FnM2M1FRMOF1 F1F2 F2Fn FnM1 MO(F1)M2 MO(F2)Mn MO(Fn)二、平面任意力系向一点的简化F1F2O任选O点为简化中心理论力学46平面任意力系平面汇交力系+平面力偶系向一点简化1 i 1 1 i其中平面汇交力系的合力为FR=F+F2+Fn=F+F2+Fn=F平面力偶系的合力偶为MO M1 M2 Mn MO(F)MO(F2)MO(Fn)MO(F)平面汇交力系的合力FR,不是原来任意力系的合力。平面力偶系的
19、合力偶MO 也不是原来任意力系的合力偶。R R,j)iyFix方向:cos(F,i)FR R理论力学47原力系各力的矢量和,称为原力系的主矢。(不是原力系的合力)原力系各力对简化中心的矩,称为原力系对简化中心的主矩。主矢与简化中心位置无关(因主矢等于各力的矢量和)FR2 2Fcos(F F,移动效应主矢iMO M1 M2 M3 MO(F 1)MO(F2)MO(F)主矩主矢 1 1 iFR=F+F2+Fn=F F2+Fn=F理论力学48i大小:MO MO(F)主矩MO转向:转向规定+转动效应雨搭主矩一般与简化中心有关(因主矩等于各力对简化中心之矩的代数和)固定端(插入端)约束车刀理论力学49理论
20、力学50A一物体的一端完全固定在另一物体上所构成的约束称为固定端约束。(与固定铰不同)AFAyFAMAFAxA MAAFAx、FAy、MA为固定端的约束力;FAx、FAy限制物体移动,MA限制物体转动。理论力学51理论力学52理论力学53理论力学54 三、平面任意力系简化结果分析平面任意力系向作用面内一点简化得一力和一力偶,该力等于原力系的主矢,力偶矩等原力系对简化中心的主矩。下面针对主矢、主矩的不同情况分别加以讨论。1、若FR 0,MO 0,则力系合成为合力偶,合力偶矩等于原力系对简化中心的主矩MO,此时主矩与简化中心的位置无关。2、若FR 0,MO 0,则力系合成为一个合力,主矢 FR 等
21、于原力系的合力矢 FR,合力FR通过简化中心O点。(合力与简化中心位置有关,换个简化中心,主矩不为零)理论力学553、若 FR 0,MO 0,则力系仍合成为一个合力,合力等于原力系的主矢。作用点不在简化中心。ooFRMOoFRFRooFR=o =MOFRd idFRMO(FR)FRd MO MO(F)d合力矩定理4、若FR 0,MO 0,则该力系平衡,下节专门讨论。q(x)dx xq(x)dx q(x)dx理论力学56l0l0MOFRd dxAOq(x)lxdxMOl0主矢:F R l0 xq(x)dx主矩:MO 力系可进一步简化为一合力,其作用线距O点的距离为:四、平行分布载荷的简化取O点为
22、简化中心,将力系向O点简化。dF R q(x)dxdF RF RFR结论:合力的大小等于线荷载所组成几何图形的面积。合力的方向与线荷载的方向相同。合力的作用线通过荷载图的形心。理论力学l/2qF12qll/2F32l3lq1、均布荷载 F ql2、三角形荷载 F 3、梯形荷载lq257q1可以看作一个三角形荷载和一个均布荷载的叠加平行分布载荷简化的特例2m58F1F2F3F4OABCxy3m3060例在长方形平板的O,A,B,C点上分别作用着有四个力:F1=1kN,F2=2kN,F3=F4=3kN(如图),试求以上四个力构成的力系对O点的简化结果,以及该力系的最后合成结果。解:求向O点简化结果
23、1.求主矢 FR,建立如图坐标系Oxy。FRx Fx F2 cos60F 3 F4 cos300.598 kN1FRy=Fy F F2sin60F4sin30所以,主矢的大小理论力学 x y0.768 kNFR FR2 FR2 0.794 kNcosFR ,j=0.789d 0.51m理论力学59最后合成结果由于主矢和主矩都不为零,所以最后合成结果是一个合力FR。如右图所示。主矢的方向:=0.614FRxFRcosFR,i=FR,i 52.1FR yFR2.求主矩MOMO MOF 2F2 cos602F 3 3F4sin300.5kNm合力FR到O点的距离FR FRMOFRCyxOAFR,j
24、37.9BMOFRFR理论力学60例重力坝受力如图所示。设G1=450kN,G2=200kN,F1=300 kN,F2=70 kN。求力系的合力FR的大小和方向余弦,合力与基线OA的交点到O点的距离x,以及合力作用线方程。9m3m5.7m3mxyBCOq90F11.5mG13.9mG2 AF2解:1、求力系的合力FR的大小和方向余弦。AB主矢的投影 FFR y Fy G1 G2 F2sinq 670.1 kNcosFR,i FxFR cosFR,jFyFR 理论力学61ACFRxFRMOOFRy所以力系合力FR的大小FR FR (Fx)2(Fy)2 709.4kN方向余弦则有 0.328 0.
25、945FR,i 70.84FR,j 180 19.161力系对O点的主矩为MO MOF F 3 mG11.5 mG23.9 m 2 355 kNmx 3.514mFR xO70.8470.84理论力学62AOCFRFRyFRxxACFRFRyMO70.84o2、求合力与基线OA的交点到O点的距离 x。由合力矩定理得MO MO(FR)MO(FRx)MO(FRy)其中 MO(FRx)0故MO MO(FR y)FR y xMO解得FR y理论力学63将合力作用于此点,则3、求合力作用线方程。设合力作用线上任一点的坐标为(x,y),AOCFRFRyFRx70.84xxyMO MOFR xFR y yF
展开阅读全文