MATLAB教程第11讲回归分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《MATLAB教程第11讲回归分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MATLAB 教程 11 回归 分析 课件
- 资源描述:
-
1、精选版课件ppt1数学建模与数学实验数学建模与数学实验回归分析回归分析实验目的实验目的实验内容实验内容2、掌握用数学软件求解回归分析问题。、掌握用数学软件求解回归分析问题。1、直观了解回归分析基本内容。、直观了解回归分析基本内容。1 1、回归分析的基本理论。、回归分析的基本理论。3 3、实验作业。、实验作业。2、用数学软件求解回归分析问题。、用数学软件求解回归分析问题。精选版课件ppt3回归分析回归分析数学模型及定义数学模型及定义*模型参数估计模型参数估计*检验、预测与控制检验、预测与控制可线性化的一元非线可线性化的一元非线性回归(曲线回归性回归(曲线回归)数学模型及定义数学模型及定义*模型参
2、数估计模型参数估计*多元线性回归中的多元线性回归中的检验与预测检验与预测逐步回归分析逐步回归分析精选版课件ppt4一、数学模型一、数学模型例例1 测16名成年女子的身高与腿长所得数据如下:身高143145146147149150153154155156157158159160162164腿长8885889192939395969897969899100102以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi)在平面直角坐标系上标出.1401451501551601658486889092949698100102散点图xy10精选版课件ppt5 一般地,称由xy10确定的模型为一一元元线
3、线性性回回归归模模型型,记为 210,0DExy固定的未知参数0、1称为回归系数,自变量 x 也称为回归变量.一元线性回归分析的主要任务主要任务是:1、用试验值(样本值)对0、1和作点估计;2、对回归系数0、1作假设检验;3、在 x=0 x处对 y 作预测,对 y 作区间估计.xY10,称为 y 对对 x的的回回归归直直线线方方程程.返回返回精选版课件ppt6二、模型参数估计二、模型参数估计1、回归系数的最小二乘估计、回归系数的最小二乘估计有 n 组独立观测值,(x1,y1),(x2,y2),(xn,yn)设 相互独立且,niiiiDEnixy.,0,.,2,1,21210 记 niiinii
4、xyQQ12101210),(最小二乘法最小二乘法就是选择0和1的估计0,1使得 ),(min),(10,1010QQ精选版课件ppt722110 xxyxxyxy解得 其中niiniiynyxnx111,1,niiiniiyxnxyxnx11221,1.(经经验验)回回归归方方程程为为:)(110 xxyxy 或 niiniiixxyyxx1211精选版课件ppt82、2的的无无偏偏估估计计记 niniiiiieyyxyQQ11221010)(),(称 Qe为残残差差平平方方和和或剩剩余余平平方方和和.2的的无无偏偏估估计计为 )2(2nQee称2e为剩剩余余方方差差(残残差差的的方方差差)
5、,2e分别与0、1独立。e称为剩剩余余标标准准差差.返回返回精选版课件ppt9三、检验、预测与控制三、检验、预测与控制1、回归方程的显著性检验、回归方程的显著性检验 对回归方程xY10的显著性检验,归结为对假设 0:;0:1110HH进行检验.假设0:10H被拒绝,则回归显著,认为 y 与 x存在线性关系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系不能用一元线性回归模型来描述,所得的回归方程也无意义.精选版课件ppt10()F检验法检验法 当0H成立时,)2/(nQUFeF(1,n-2)其中 niiyyU12(回归平方和)回归平方和)故 F)2,1(1nF,拒绝0H,否则就接
6、受0H.()t检验法检验法niiniixxxnxxxL12212)(其中当0H成立时,exxLT1t(n-2)故)2(21ntT,拒绝0H,否则就接受0H.精选版课件ppt11()r检验法检验法当|r|r1-时,拒绝 H0;否则就接受 H0.记 niniiiniiiyyxxyyxxr11221)()()(其中2,121111nFnr精选版课件ppt122、回归系数的置信区间、回归系数的置信区间0和和1置信水平为置信水平为 1-的置信区间分别为的置信区间分别为 xxexxeLxnntLxnnt221022101)2(,1)2(和 xxexxeLntLnt/)2(,/)2(2112112的的置置信
7、信水水平平为为 1-的的置置信信区区间间为为 )2(,)2(22221nQnQee精选版课件ppt133、预测与控制、预测与控制(1)预测)预测用 y0的回归值0100 xy作为 y0的预测值的预测值.0y的置信水平为1的预测区间预测区间为 )(),(0000 xyxy其中xxeLxxnntx2021011)2()(特 别,当 n 很 大 且 x0在x附 近 取 值 时,y 的 置 信 水 平 为1的 预预 测测 区区 间间 近近 似似 为为 2121,uyuyee精选版课件ppt14(2)控制)控制要求:xy10的值以1的概率落在指定区间yy,只要控制 x 满足以下两个不等式 yxyyxy)
8、(,)(要求)(2xyy.若yxyyxy)(,)(分别有解x和x,即yxyyxy )(,)(.则xx,就是所求的 x 的控制区间.返回返回精选版课件ppt15四、可线性化的一元非线性回归四、可线性化的一元非线性回归 (曲线回归)(曲线回归)例例2 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:使用次数增大容积使用次数增大容积234567896.428.209.589.509.7010.009.939.991011121314151610.4910.5910.6010.8010.6010.901
9、0.76精选版课件ppt1624681012141666.577.588.599.51010.511散点图此即非线性回归非线性回归或曲线回归曲线回归 问题(需要配曲线)配曲线的一般方法是:配曲线的一般方法是:先对两个变量 x 和 y 作 n 次试验观察得niyxii,.,2,1),(画出散点图,根据散点图确定须配曲线的类型.然后由 n 对试验数据确定每一类曲线的未知参数 a 和 b.采用的方法是通过变量代换把非线性回归化成线性回归,即采用非线性回归线性化的方法.精选版课件ppt17通常选择的六类曲线如下:(1)双双曲曲线线xbay1(2)幂幂函函数数曲曲线线y=abx,其中 x0,a0(3)指
10、指数数曲曲线线 y=abxe其中参数 a0.(4)倒倒指指数数曲曲线线 y=axbe/其中 a0,(5)对对数数曲曲线线 y=a+blogx,x0(6)S 型型曲曲线线xbeay1返回返回解例2.由散点图我们选配倒指数曲线y=axbe/根据线性化方法,算得4587.2,1107.1Ab由此 6789.11Aea最后得 xey1107.16789.11精选版课件ppt18一、数学模型及定义一、数学模型及定义一般称 nICOVEXY2),(,0)(为高斯马尔柯夫线性模型(k k 元线性回归模型元线性回归模型),并简记为),(2nIXY nyyY.1,nknnkkxxxxxxxxxX.1.1.121
11、2222111211,k.10,n.21kkxxy.110称为回回归归平平面面方方程程.返回返回线性模型),(2nIXY考虑的主要问题是:(1)用试验值(样本值)对未知参数和2作点估计和假设检验,从而建立 y 与kxxx,.,21之间的数量关系;(2)在,.,0022011kkxxxxxx处对 y 的值作预测与控制,即对 y 作区间估计.精选版课件ppt19二、模型参数估计二、模型参数估计1、对、对i和和2作估计作估计用最小二乘法求k,.,0的估计量:作离差平方和 niikkiixxyQ12110.选择k,.,0使 Q 达到最小。解得估计值 YXXXTT1 得到的i代入回归平面方程得:kkxx
12、y.110称为经经验验回回归归平平面面方方程程.i称为经经验验回回归归系系数数.注注意意:服从 p+1 维正态分 布,且为的无偏估 计,协方差阵为C2.C=L-1=(cij),L=XX精选版课件ppt202、多多 项项 式式 回回 归归设变量 x、Y 的回归模型为 ppxxxY.2210其中 p 是已知的,),2,1(pii是未知参数,服从正态分布),0(2N.令iixx,i=1,2,k 多项式回归模型变为多元线性回归模型.返回返回 kkxxxY.2210称为回回归归多多项项式式.上面的回归模型称为多多项项式式回回归归.精选版课件ppt21三、多元线性回归中的检验与预测三、多元线性回归中的检验
13、与预测1、线线性性模模型型和和回回归归系系数数的的检检验验假设 0.:100kH()F检验法检验法()r检验法检验法定义eyyQUULUR为 y 与 x1,x2,.,xk的多多元元相相关关系系数数或复复相相关关系系数数。由于2211RRkknF,故用 F 和用 R检验是等效的。当 H0成立时,)1,()1/(/knkFknQkUFe如果 F F1-(k,n-k-1),则拒绝 H0,认为 y 与 x1,xk之间显著地有线性关系;否则就接受 H0,认为 y 与 x1,xk之间线性关系不显著.其中 niiyyU12(回回归归平平方方和和)niiieyyQ12)(残差平方和)残差平方和)精选版课件pp
14、t222、预测、预测(1)点预测)点预测求出回归方程kkxxy.110,对于给定自变量的值kxx,.,*1,用*110*.kkxxy来预测*110.kkxxy.称*y为*y的点预测.(2)区间预测)区间预测y 的1的预测区间(置信)区间为),(21yy,其中)1(1)1(12/10022/1001kntxxcyykntxxcyykikjjiijekikjjiijeC=L-1=(cij),L=XX1knQee返回返回精选版课件ppt23四、逐步回归分析四、逐步回归分析(4)“有进有出”的逐步回归分析。(1)从所有可能的因子(变量)组合的回归方程中选择最优者;(2)从包含全部变量的回归方程中逐次剔
15、除不显著因子;(3)从一个变量开始,把变量逐个引入方程;选择“最优”的回归方程有以下几种方法:“最优最优”的回归方程的回归方程就是包含所有对Y有影响的变量,而不包含对Y影响不显著的变量回归方程。以第四种方法,即逐步回归分析法逐步回归分析法在筛选变量方面较为理想.精选版课件ppt24 这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。逐步回归分析法逐步回归分析法的思想:从一个自变量开始,视自变量Y作用的显著程度,从大到地依次逐个引入回归方程。当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉。引入一个自变量或从回归方程中剔除一个自变量,为逐步回归
16、的一步。对于每一步都要进行Y值检验,以确保每次引入新的显著性变量前回归方程中只包含对Y作用显著的变量。返回返回精选版课件ppt251、多元线性回归、多元线性回归2、多项式回归、多项式回归3、非线性回归、非线性回归4、逐步回归、逐步回归返回返回精选版课件ppt26多元线性回归多元线性回归 b=regress(Y,X)npnnppxxxxxxxxxX.1.1.1212222111211nYYYY.21pb.101、确定回归系数的点估计值:确定回归系数的点估计值:ppxxy.110对一元线性回归,取 p=1 即可精选版课件ppt273、画出残差及其置信区间:画出残差及其置信区间:rcoplot(r,
17、rint)2、求回归系数的点估计和区间估计、并检验回归模型:求回归系数的点估计和区间估计、并检验回归模型:b,bint,r,rint,stats=regress(Y,X,alpha)回归系数的区间估计残差用于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对应的概率p置信区间 显著性水平(缺省时为0.05)相关系数 r2越接近 1,说明回归方程越显著;F F1-(k,n-k-1)时拒绝 H0,F 越大,说明回归方程越显著;与 F 对应的概率 p时拒绝 H0,回归模型成立.精选版课件ppt28例例1 解:解:1、输入数据:输入数据:x=143 145 146 147 149 150 1
18、53 154 155 156 157 158 159 160 162 164;X=ones(16,1)x;Y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102;2、回归分析及检验:回归分析及检验:b,bint,r,rint,stats=regress(Y,X)b,bint,stats得结果:b=bint=-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats=0.9282 180.9531 0.0000即7194.0,073.1610;0的置信区间为-33.7017,1.5612,1的置信区间为0
19、.6047,0.834;r2=0.9282,F=180.9531,p=0.0000p0.05,可知回归模型 y=-16.073+0.7194x 成立.To MATLAB(liti11)精选版课件ppt293、残差分析,作残差图:、残差分析,作残差图:rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第二个数据可视为异常点.4、预测及作图:、预测及作图:z=b(1)+b(2)*x plot(x,Y,k+,x,z,r)246810121416-5-4-3-
展开阅读全文