Lecture9SimpleLinearRegression第九章简单线性回归分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《Lecture9SimpleLinearRegression第九章简单线性回归分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Lecture9SimpleLinearRegression 第九 简单 线性 回归 分析 课件
- 资源描述:
-
1、Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-1Chapter 12Simple Linear RegressionBusiness Statistics:A First CourseFifth EditionBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-2Learning ObjectivesIn this chapter,you learn:n How to use regression analysis t
2、o predict the value of a dependent variable based on an independent variablen The meaning of the regression coefficients b0 and b1n How to evaluate the assumptions of regression analysis and know what to do if the assumptions are violatedn To make inferences about the slope and correlation coefficie
3、ntn To estimate mean values and predict individual valuesBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-3Correlation vs.RegressionnA scatter plot can be used to show the relationship between two variablesnCorrelation analysis is used to measure the strength of the association(l
4、inear relationship)between two variablesnCorrelation is only concerned with strength of the relationship nNo causal effect is implied with correlationnScatter plots were first presented in Ch.2nCorrelation was first presented in Ch.3Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 1
5、2-4Introduction to Regression AnalysisnRegression analysis is used to:nPredict the value of a dependent variable based on the value of at least one independent variablenExplain the impact of changes in an independent variable on the dependent variableDependent variable:the variable we wish to predic
6、t or explainIndependent variable:the variable used to predict or explain the dependent variableBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-5Simple Linear Regression ModelnOnly one independent variable,XnRelationship between X and Y is described by a linear functionnChanges i
7、n Y are assumed to be related to changes in XBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-6Types of RelationshipsYXYXYYXXLinear relationshipsCurvilinear relationshipsBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-7Types of RelationshipsYXYXYYXXStrong rel
8、ationshipsWeak relationships(continued)Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-8Types of RelationshipsYXYXNo relationship(continued)Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-9ii10iXYLinear componentSimple Linear Regression ModelPopulation Y int
9、ercept Population SlopeCoefficient Random Error termDependent VariableIndependent VariableRandom Error componentBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-10(continued)Random Error for this Xi valueYXObserved Value of Y for XiPredicted Value of Y for Xi ii10iXYXiSlope=1Inte
10、rcept=0 iSimple Linear Regression ModelBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-11i10iXbbYThe simple linear regression equation provides an estimate of the population regression lineSimple Linear Regression Equation(Prediction Line)Estimate of the regression interceptEsti
11、mate of the regression slopeEstimated (or predicted)Y value for observation iValue of X for observation iBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-12The Least Squares Methodb0 and b1 are obtained by finding the values of that minimize the sum of the squared differences bet
12、ween Y and :2i10i2ii)Xb(b(Ymin)Y(YminYBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-13Finding the Least Squares EquationnThe coefficients b0 and b1,and other regression results in this chapter,will be found using Excel or MinitabFormulas are shown in the text for those who are
13、 interestedBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-14nb0 is the estimated mean value of Y when the value of X is zeronb1 is the estimated change in the mean value of Y as a result of a one-unit change in XInterpretation of the Slope and the InterceptBusiness Statistics:A
14、 First Course,5e 2009 Prentice-Hall,Inc.Chap 12-15Simple Linear Regression ExamplenA real estate agent wishes to examine the relationship between the selling price of a home and its size(measured in square feet)nA random sample of 10 houses is selectednDependent variable(Y)=house price in$1000snInde
15、pendent variable(X)=square feetBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-16Simple Linear Regression Example:DataHouse Price in$1000s(Y)Square Feet(X)2451400312160027917003081875199110021915504052350324245031914252551700Business Statistics:A First Course,5e 2009 Prentice-Ha
16、ll,Inc.Chap 12-17Simple Linear Regression Example:Scatter PlotHouse price model:Scatter PlotBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-18Simple Linear Regression Example:Using ExcelBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-19Simple Linear Regressi
17、on Example:Excel OutputRegression StatisticsMultiple R0.76211R Square0.58082Adjusted R Square0.52842Standard Error41.33032Observations10ANOVA dfSSMSFSignificance FRegression118934.934818934.934811.08480.01039Residual813665.56521708.1957Total932600.5000 CoefficientsStandard Errort StatP-valueLower 95
18、%Upper 95%Intercept98.2483358.033481.692960.12892-35.57720232.07386Square Feet0.109770.032973.329380.010390.033740.18580The regression equation is:feet)(square 0.10977 98.24833 price houseBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-20Simple Linear Regression Example:Minitab
19、OutputThe regression equation isPrice=98.2+0.110 Square Feet Predictor Coef SE Coef T PConstant 98.25 58.03 1.69 0.129Square Feet 0.10977 0.03297 3.33 0.010 S=41.3303 R-Sq=58.1%R-Sq(adj)=52.8%Analysis of Variance Source DF SS MS F PRegression 1 18935 18935 11.08 0.010Residual Error 8 13666 1708Total
20、 9 32600The regression equation is:house price=98.24833+0.10977(square feet)Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-21Simple Linear Regression Example:Graphical RepresentationHouse price model:Scatter Plot and Prediction Linefeet)(square 0.10977 98.24833 price houseSlope
21、=0.10977Intercept=98.248 Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-22Simple Linear Regression Example:Interpretation of bonb0 is the estimated mean value of Y when the value of X is zero(if X=0 is in the range of observed X values)nBecause a house cannot have a square foot
22、age of 0,b0 has no practical applicationfeet)(square 0.10977 98.24833 price houseBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-23Simple Linear Regression Example:Interpreting b1nb1 estimates the change in the mean value of Y as a result of a one-unit increase in XnHere,b1=0.10
23、977 tells us that the mean value of a house increases by 0.10977($1000)=$109.77,on average,for each additional one square foot of sizefeet)(square 0.10977 98.24833 price houseBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-24317.850)0.1098(200 98.25(sq.ft.)0.1098 98.25 price hou
24、sePredict the price for a house with 2000 square feet:The predicted price for a house with 2000 square feet is 317.85($1,000s)=$317,850Simple Linear Regression Example:Making PredictionsBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-25Simple Linear Regression Example:Making Pre
25、dictionsnWhen using a regression model for prediction,only predict within the relevant range of dataRelevant range for interpolationDo not try to extrapolate beyond the range of observed XsBusiness Statistics:A First Course,5e 2009 Prentice-Hall,Inc.Chap 12-26Measures of VariationnTotal variation is
展开阅读全文