212《椭圆的简单几何性质(一)》课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《212《椭圆的简单几何性质(一)》课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆的简单几何性质一 212 椭圆 简单 几何 性质 课件
- 资源描述:
-
1、2.1.2椭圆的简单椭圆的简单几何性质几何性质(一一)复习引入复习引入1.椭圆的定义是什么?椭圆的定义是什么?复习引入复习引入1.椭圆的定义是什么?椭圆的定义是什么?2.椭圆的标准方程是什么?椭圆的标准方程是什么?利用利用椭圆的标准方程椭圆的标准方程研究椭圆的几何性质研究椭圆的几何性质以焦点在以焦点在x轴上的椭圆为例轴上的椭圆为例(ab0)12222 byax讲授新课讲授新课A1讲授新课讲授新课(ab0)12222 byax1范围范围,122 by,122 ax椭圆上点的坐标椭圆上点的坐标(x,y)都适合不等式都适合不等式B2byOF1F2xB1A2-aa-bA1讲授新课讲授新课(ab0)12
2、222 byax椭圆位于直线椭圆位于直线xa和和yb围成的矩形里围成的矩形里|x|a,|y|b1范围范围,122 by,122 ax即即x2a2,y2b2,椭圆上点的坐标椭圆上点的坐标(x,y)都适合不等式都适合不等式B2byOF1F2xB1A2-aa-b22(1)1259xy22(2)416xy练习练习1:分别说出下列椭圆方程中:分别说出下列椭圆方程中x,y的取值范围的取值范围-5x 5-3y 3-2x 2-4y 4221416xy(ab0)12222 byax2对称性对称性讲授新课讲授新课yOF1xF2 在椭圆的标准方程里,把在椭圆的标准方程里,把x换成换成x,或,或把把y换成换成y,或把
3、,或把x、y同时换成同时换成x、y时,时,方程有变化吗?这说明什么?方程有变化吗?这说明什么?(ab0)12222 byax2对称性对称性讲授新课讲授新课yOF1F2xYXOP(x,y)P2(-x,y)P3(-x,-y)P1(x,-y)关于关于x轴对称轴对称关于关于y轴对称轴对称关于原点对称关于原点对称图形的对称实质是图形上点的对称图形的对称实质是图形上点的对称22221(0)xyabab新课探究新课探究二、椭圆的对称性二、椭圆的对称性22221(0)xyabab 把把x换成换成-x,方程不变方程不变,说明椭圆关于说明椭圆关于()轴对称;轴对称;把把y换成换成-y,方程不变方程不变,说明椭圆关
4、于说明椭圆关于()轴对称;轴对称;把把x换成换成-x,y换成换成-y,方程还是不变方程还是不变,说明椭圆关于说明椭圆关于()对称;对称;中心:椭圆的对称中心叫做椭圆的中心。中心:椭圆的对称中心叫做椭圆的中心。结论:坐标轴是椭圆的对称轴,原点是椭圆的对称中心。结论:坐标轴是椭圆的对称轴,原点是椭圆的对称中心。y x 原点原点oxy(,)P x y椭圆关于椭圆关于y轴轴、x轴轴、原点原点都是对称的都是对称的原点原点是椭圆的对称中心是椭圆的对称中心椭圆的对称中心叫做椭圆的对称中心叫做椭圆的中心椭圆的中心 在椭圆的标准方程里,把在椭圆的标准方程里,把x换成换成x,或,或把把y换成换成y,或把,或把x、
5、y同时换成同时换成x、y时,时,方程有变化吗?这说明什么?方程有变化吗?这说明什么?(ab0)12222 byax2对称性对称性讲授新课讲授新课yOF1F2x坐标轴坐标轴是椭圆的对称轴是椭圆的对称轴A1讲授新课讲授新课3顶点顶点 只须只须令令x0,得,得yb,点点B1(0,b)、B2(0,b)是椭圆和是椭圆和y轴的两个交点;轴的两个交点;令令y0,得得xa,点点A1(a,0)、A2(a,0)是椭圆和是椭圆和x轴的两个交点轴的两个交点yOF1F2xB2B1A2(ab0).12222 byax2、椭圆的顶点、椭圆的顶点22221(0),xyabab在中令令 x=0,得,得 y=?,说明椭圆与?,说
6、明椭圆与 y轴的交点(轴的交点(),),令令 y=0,得,得 x=?,说明椭圆与说明椭圆与 x轴的交点(轴的交点()。)。*顶点顶点:椭圆与它的对称椭圆与它的对称轴的四个交点,叫做椭圆的轴的四个交点,叫做椭圆的顶点。顶点。oxyB1(0,b)B2(0,-b)A1A2(a,0)0,ba,0*长轴长轴、短轴短轴:线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴和短轴。长轴和短轴。a、b分别叫做椭圆的分别叫做椭圆的长半长半轴长轴长和和短半轴长短半轴长。焦点总在长轴上焦点总在长轴上!A1讲授新课讲授新课3顶点顶点 只须令只须令x0,得,得yb,点,点B1(0,b)、B2(0,b)是椭圆和是椭
7、圆和y轴的两个交点;令轴的两个交点;令y0,得得xa,点,点A1(a,0)、A2(a,0)是椭圆和是椭圆和x轴的两个交点轴的两个交点yOF1F2xB2B1A2(ab0).12222 byaxA1讲授新课讲授新课3顶点顶点椭圆有四个顶点:椭圆有四个顶点:A1(a,0)、A2(a,0)、B1(0,b)、B2(0,b)椭圆和它的对称轴的四个交点叫椭圆和它的对称轴的四个交点叫椭圆的顶点椭圆的顶点 只须令只须令x0,得,得yb,点,点B1(0,b)、B2(0,b)是椭圆和是椭圆和y轴的两个交点;令轴的两个交点;令y0,得得xa,点,点A1(a,0)、A2(a,0)是椭圆和是椭圆和x轴的两个交点轴的两个交
8、点yOF1F2xB2B1A2线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cb线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等于2a
9、.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长|B1F1|B1F2|B2F1|B2F2|a线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长|B1F1|B1F2|B2F1|B2F2|aa线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴
10、短轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长|B1F1|B1F2|B2F1|B2F2|a在在RtOB2F2中,中,|OF2|2|B2F2|2|OB2|2,即,即c2a2b2讲授新课讲授新课 由椭圆的范围、对称性和顶点,由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的再进行描点画图,只须描出较少的点,就可以得到较正确的图形点,就可以得到较正确的图形.小小 结结:123-1-2-3-44y123-1-2-3-44y1 2 3 4 5
11、-1-5-2-3-4x1 2 3 4 5-1-5-2-3-4x根据前面所学有关知识画出下列图形根据前面所学有关知识画出下列图形1162522yx142522yx(1)(2)A1 B1 A2 B2 B2 A2 B1 A1 讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比ace 椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比ace 椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比ace 椭圆的离心率椭圆的离心率ac0
展开阅读全文