171勾股定理第二课时课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《171勾股定理第二课时课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 171 勾股定理 第二 课时 课件
- 资源描述:
-
1、勾股定理勾股定理 2勾股定理:勾股定理:直角三角形两直角边的平直角三角形两直角边的平方和等于斜边的平方方和等于斜边的平方活 动 1abcABC如果在如果在Rt ABC中,中,C=90,那么那么222.abc结论变形结论变形c2=a2 +b2abcABC(1)求出下列直角三角形中未知的边)求出下列直角三角形中未知的边610ACB8A15CB练练 习习302245回答:回答:在解决上述问题时,每个直角三角形需知道几个条件?在解决上述问题时,每个直角三角形需知道几个条件?直角三角形哪条边最长?直角三角形哪条边最长?1、下列阴影部分是一个正方形,求此正方形的面积下列阴影部分是一个正方形,求此正方形的面
2、积15厘米厘米17厘米厘米解:设正方形的边长为解:设正方形的边长为x厘米厘米,则则 x2=172-152 x2=64答:正方形的面积是答:正方形的面积是64平方厘米。平方厘米。练一练练一练DABC例例2 蚂蚁沿图中的折线从蚂蚁沿图中的折线从A点爬到点爬到D点,一共爬了多点,一共爬了多少厘米?(小方格的边长为少厘米?(小方格的边长为1厘米)厘米)GFE(1)如图在如图在ABC中,中,ACB=90,CDAB,D为为垂足垂足,AC=2.1cm,BC=2.8cm.求求 ABC的面积;的面积;斜边斜边AB的长;的长;斜边斜边AB上的高上的高CD的长。的长。DABC活 动 2(2)一个门框尺寸如下图所示)
3、一个门框尺寸如下图所示若有一块长若有一块长3米,宽米,宽0.8米的薄木板,问怎样从门框通过?米的薄木板,问怎样从门框通过?若薄木板长若薄木板长3米,宽米,宽1.5米呢?米呢?若薄木板长若薄木板长3米,宽米,宽2.2米呢?为什么?米呢?为什么?ABC1 m2 m木板的宽木板的宽2.2米大于米大于1米,米,横着不能从门框通过;横着不能从门框通过;木板的宽木板的宽2.2米大于米大于2米,米,竖着也不能从门框通过竖着也不能从门框通过 只能试试斜着能否通过,只能试试斜着能否通过,对角线对角线AC的长最大,因此需的长最大,因此需要求出要求出AC的长,怎样求呢?的长,怎样求呢?想一想例1一个门框的尺寸如图所
4、示,一块长3 m,宽 2.2 m的长方形薄木板能否从门框内通过?为什么?解:在RtABC中,根据勾股定理,得AC2=AB2+BC2=12+22=5AC=2.24因为 大于木板的宽2.2 m,所以木板能从门框内通过55将实际问题转化为数学问题,建立几何模型,画出图形,分析已知量、待求量,让学生掌握解决实际问题的一般套路A B C D 1 m 2 m(3)有一个边长为)有一个边长为50dm 的正方形洞口,的正方形洞口,想用一个圆盖去盖住这个洞口,圆的直径想用一个圆盖去盖住这个洞口,圆的直径至少多长?至少多长?50dmABCD22225050500071()ACABBCdm 解:解:在在Rt ABC
5、中,中,B=90,AC=BC=50,由勾股定理可知:由勾股定理可知:例1:一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.4m如果梯子顶端A沿墙下滑0.4m,那么梯子底端B也外移0.4m吗?ABCDE解:在RtABC中,ACB=90 AC2+BC2AB2 2.42+BC22.52 BC0.7m由题意得:DEAB2.5mDCACAD2.40.42m在RtDCE中,BE1.50.70.8m0.4m答;梯子底端答;梯子底端B不是外移不是外移0.4m DCE=90 DC2+CE2DE2 22+BC22.52 CE1.5m拓展提高形成技能今有池方一丈,葭生其中央,出水一尺,引葭赴岸,
6、适与岸齐问水深、葭长各几何?利用勾股定理解决实际问题的一般思路:(1)重视对实际问题题意的正确理解;(2)建立对应的数学模型,运用相应的数学知识;(3)方程思想在本题中的运用A B C 例例3:在我国古代数学著作在我国古代数学著作九章算术九章算术中记载了一道有趣的问题中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为这个问题意思是:有一个水池,水面是一个边长为10尺的正方形尺的正方形,在水池的中央有一根新生的芦苇,它高出水面在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度苇拉向岸边,它的顶端恰好到
7、达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?和这根芦苇的长度各是多少?DABC解解:设水池的深度设水池的深度AC为为X尺尺,则芦苇高则芦苇高AD为为(X+1)尺尺.根据题意得根据题意得:BC2+AC2=AB252+X2=(X+1)225+X2=X2+2X+1 X=12 X+1=12+1=13答答:水池的深度为水池的深度为12尺尺,芦苇高为芦苇高为13尺尺.巩固练习 如图,一棵树被台风吹折断后,树顶端落在离底端3米处,测得折断后长的一截比短的一截长1米,你能计算树折断前的高度吗?例例4:矩形矩形ABCD如图折叠,使点如图折叠,使点D落在落在BC边上的边上的点点F处,已知处,已知AB=
展开阅读全文