书签 分享 收藏 举报 版权申诉 / 34
上传文档赚钱

类型双曲线及其标准方程(带动画)很好(高教课堂)课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4971040
  • 上传时间:2023-01-29
  • 格式:PPT
  • 页数:34
  • 大小:2.55MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《双曲线及其标准方程(带动画)很好(高教课堂)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    双曲线 及其 标准 方程 动画 很好 高教 课堂 课件
    资源描述:

    1、 1教学运用巴西利亚大教堂巴西利亚大教堂北京摩天大楼北京摩天大楼法拉利主题公园法拉利主题公园花瓶花瓶2教学运用1.回顾椭圆的定义?回顾椭圆的定义?1F2F 0,c 0,cXYO yxM,探索研究平面内与两个定点平面内与两个定点F1、F2的的距离的和距离的和等于常数(大于等于常数(大于F1F2)的点轨迹叫做椭圆。)的点轨迹叫做椭圆。思考:如果把椭圆定义中的“距离之和”改为“距离之差”,那么动点的轨迹会是怎样的曲线?即“平面内与两个定点F1、F2的距离的差等于常数的点的轨迹”是什么?3教学运用画双曲线画双曲线演示实验:用拉链画双曲线演示实验:用拉链画双曲线4教学运用5教学运用根据实验及椭圆定义,你

    2、能给双曲线下定义吗?根据实验及椭圆定义,你能给双曲线下定义吗?6教学运用 两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.oF2 2F1 1M 平面内平面内与两个定点与两个定点F1,F2的距离的差的距离的差的绝对值的绝对值等于常数等于常数(小于(小于F1F2)的点的轨迹叫做的点的轨迹叫做双曲线双曲线.2、双曲线定义、双曲线定义|MF1|-|MF2|=常数(小于常数(小于|F1F2|)注意注意|MF1|-|MF2|=2a(1)(1)距离之差的距离之差的绝对值绝对值(2)(2)常数要常数要小于小于|F|F1 1F F2 2|大于大于0 002a2c符号表示:符号表

    3、示:7教学运用【思考思考2】说明在下列条件下说明在下列条件下动点动点M的轨迹各是什么图形?的轨迹各是什么图形?(F1、F2是两定点是两定点,|F1F2|=2c(0a2c,动点,动点M的轨迹的轨迹 .8教学运用|MF|MF1 1|MF|MF2 2|=|F|=|F1 1F F2 2|时,时,M M点一定在上图中的射线点一定在上图中的射线F F1 1P P,F F2 2Q Q 上,此时点的轨迹为两条射线上,此时点的轨迹为两条射线F F1 1P P、F F2 2Q Q。常数大于常数大于|F|F1 1F F2 2|时时常数常数等于|F|F1 1F F2 2|时时|MF|MF1 1|MF|MF2 2|F|

    4、F1 1F F2 2|F F2 2F F1 1P PMQ QM 是不可能的,因为三角是不可能的,因为三角形两边之差小于第三边。此时无轨迹。形两边之差小于第三边。此时无轨迹。此时点的轨迹是线段此时点的轨迹是线段F F1 1F F2 2的垂直平的垂直平分线。分线。则则|MF|MF1 1|=|MF|=|MF2 2|F1F2M常数等于常数等于0 0时时若常数若常数2a=|MF2a=|MF1 1|MF|MF2 2|=0|=09教学运用4)3()3()1(2222yxyx5)3()3()2(2222yxyx6)3()3()3(2222yxyx方程表示的曲线是双曲线方程表示的曲线是双曲线方程表示的曲线是双曲

    5、线的右支方程表示的曲线是双曲线的右支方程表示的曲线是方程表示的曲线是x轴上分别以轴上分别以F1和和F2为端点,为端点,指向指向x轴的负半轴和正半轴的两条射线。轴的负半轴和正半轴的两条射线。练习巩固练习巩固:10教学运用xyo设设M(x,y),双曲线的焦双曲线的焦距为距为2c(c0),F1(-c,0),F2(c,0)F1F2M即即 (x+c)2+y2-(x-c)2+y2=+2a_以以F1,F2所在的直线为所在的直线为X轴,轴,线段线段F1F2的中点为原点建立直角坐的中点为原点建立直角坐标系标系1.建系建系.2.设点设点3.列式列式|MF1|-|MF2|=2a如何求这优美的曲线的方程?如何求这优美

    6、的曲线的方程?4.4.化简化简.3.3.双曲线的标准方程双曲线的标准方程11教学运用2222(xc)y(xc)y2a 22 2222(xc)y)(xc)y2a)222cxaa(xc)y 22222222(ca)xa ya(ca)令令c c2 2a a2 2=b=b2 22222xy1abyoF1M12教学运用12222byax12222bxayF2 2F1 1MxOyOMF2F1xy222(00)=abab,并c且双曲线的标准方程双曲线的标准方程焦点在焦点在x轴上轴上焦点在焦点在y轴上轴上13教学运用双曲线定义及标准方程双曲线定义及标准方程222bac|MF1|-|MF2|=2a(2a0,b0

    7、,但,但a不一不一定大于定大于b,c2=a2+b2ab0,a2=b2+c2|MF1|MF2|=2a|MF1|+|MF2|=2a 椭椭 圆圆双曲线双曲线F(0,c)F(0,c)22221(0)xyabab22221(0)yxabab22221(0,0)xyabab22221(0,0)yxabab16教学运用判断:判断:与与 的焦点位置?的焦点位置?2211 69xy221916yx思考:如何由双曲线的标准方程来判断它的焦点思考:如何由双曲线的标准方程来判断它的焦点 是在是在X X轴上还是轴上还是Y Y轴上?轴上?结论:结论:看看 前的系数,哪一个为正,则前的系数,哪一个为正,则焦点在哪一个轴上。

    8、焦点在哪一个轴上。22,yx17教学运用22(2)33 a=b=c=xy则焦点坐标为1.已知下列双曲线的方程:已知下列双曲线的方程:22(1)1 a=b=c=916yx则焦点坐标为345(0,-5),(0,5)312(-2,0),(2,0)18教学运用19教学运用课本例课本例220教学运用(1)a=4,b=3,焦点在焦点在x轴上轴上;(2)焦点为焦点为F1(0,-6),F2(0,6),过点过点M(2,-5)利用定义得利用定义得2a=|MF|MF1 1|MF|MF2 2|4103(3)a=4,(3)a=4,过点过点(1,)(1,)21教学运用15(4)P(-2,-3)Q(,2).3焦点在x轴上,

    9、且过,15(4)P(-2,-3)Q(,2).3变式:过,221(0,0)mxnymn由题可设双曲线的方程为:221(0)mxnymn由题可设双曲线的方程为:22教学运用 例例3 3,证明椭圆,证明椭圆 与双曲线与双曲线x x2 2-15y-15y2 2=15=15的焦点相同的焦点相同 变式变式:上题的椭圆与双曲线的一个上题的椭圆与双曲线的一个交点为交点为P P,求,求|PF|PF1 1|x225+y29=123141622 yx23教学运用例例:已知圆已知圆C1:(x+3)2+y2=1和圆和圆C2:(x-3)2+y2=9,动圆动圆M同时与圆同时与圆C1及圆及圆C2相外切,求动圆圆心相外切,求动

    10、圆圆心M的轨的轨迹方程迹方程解:设动圆解:设动圆M与圆与圆C1及圆及圆C2分别外切于点分别外切于点A 和和B,根据两圆外切的条件,根据两圆外切的条件,|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|这表明动点这表明动点M与两定点与两定点C2、C1的距离的差是常数的距离的差是常数2根根据双曲线的定义,动点据双曲线的定义,动点M的轨迹为双曲线的左支的轨迹为双曲线的左支(点点M与与C2的距离大,与的距离大,与C1的距离小的距离小),这里,这里a=1,c=3,则,则b2=8,设点,设点M的坐标为的坐标为(x,y),其轨迹方程为:,其轨迹方程为:轨迹问题轨迹问题24教学运用 变式训练:

    11、已知已知B(-5,0),),C(5,0)是三)是三角形角形ABC的两个顶点,且的两个顶点,且3sinsinsin,5BCA求顶点求顶点A的的轨迹方程。轨迹方程。3 sinsinsin,5BCA解:在解:在ABCABC中,中,|BC|=10|BC|=10,331061055ACABBC故顶点故顶点A的轨迹是以的轨迹是以B、C为焦点的双曲线的左支为焦点的双曲线的左支又因又因c=5,a=3,则,则b=41 (3)916xyx 2222则顶点则顶点A的轨迹方程为的轨迹方程为25教学运用解:由双曲线的定义知点解:由双曲线的定义知点 的轨迹是双曲线的轨迹是双曲线.因因为双曲线的焦点在为双曲线的焦点在 轴上

    12、,所以设它的标准方程轴上,所以设它的标准方程为为所求双曲线的方程为:所求双曲线的方程为:2223,25 9 165abcac 2c=10由已知2a=6221916xy变变2:已知:已知 ,动点动点 到到 、的的距离之差的绝对值为距离之差的绝对值为6,求点,求点 的轨迹方程的轨迹方程.12(5,0),(5,0)FFP1F2FPP22221(0,0)xyababx26教学运用小结小结-双曲线定义及标准方程双曲线定义及标准方程222bac|MF1|-|MF2|=2a(2a|F1F2|)F(c,0)F(0,c)12222byax12222 bxayyxoF2F1MxyF2F1M27教学运用解:解:(1

    13、)(2)0mm12mm或1032012212mmmmmm 且1.已知方程已知方程 表示椭圆,则表示椭圆,则 的取值范围是的取值范围是_.22112xymmm若此方程表示双曲线,若此方程表示双曲线,的取值范围?的取值范围?m解:解:当堂训练:当堂训练:2“ab0”是方程是方程 ax2by21 表示双曲线表示双曲线的(的()条件)条件A必要不充分必要不充分 B充分不必要充分不必要C充要充要 D既不充分也不必要既不充分也不必要C28教学运用例例329教学运用30教学运用【名师点评名师点评】双曲线的定义是解决与双曲线有关的问题双曲线的定义是解决与双曲线有关的问题的主要依据,在应用时,一是注意条件的主要依据,在应用时,一是注意条件|PF1|PF2|2a(02a|F1F2|)的使用,二是注意与三角形知识相结合,的使用,二是注意与三角形知识相结合,经常利用正、余弦定理,同时要注意整体运算思想的应经常利用正、余弦定理,同时要注意整体运算思想的应用用31教学运用跟踪训练跟踪训练32教学运用33教学运用小结小结-双曲线定义及标准方程双曲线定义及标准方程222bac|MF1|-|MF2|=2a(2a|F1F2|)F(c,0)F(0,c)12222byax12222 bxayyxoF2F1MxyF2F1M34教学运用

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:双曲线及其标准方程(带动画)很好(高教课堂)课件.ppt
    链接地址:https://www.163wenku.com/p-4971040.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库