公钥密码一教材课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《公钥密码一教材课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 密码 教材 课件
- 资源描述:
-
1、给定一大素数p(比如,p在21024数量级),p1含另一大素数因子。攻击者Eve截获了密文c。分析者没有办法在有效时间内将n分解出来。若截获了密文c,又知道n个物品重量b1,b2,b3,bn,求解明文m就是背包问题。当用陷门函数f作为加密函数时,可将f公开,这相当于公开加密密钥。基中的向量的个数称为格的维数。计算npq和z(p1)(q1)。这个漏洞还有更深刻的隐患,比如在消息认证过程中容易产生伪造。至于(p,q),可以是Bob的另一部分私钥,也可以是对所有人(包括Bob)都保密的。一个潜在问题:如果Oscar获得了这对(z,y),他能用自己的签名来替代Alice的签名如果n已通过足够的测试,则
2、接受n,否则转向步骤2;这个漏洞还有更深刻的隐患,比如在消息认证过程中容易产生伪造。若已知y,g,p,求x满足y=gxmodp,称为求解离散对数问题。(模除运算/(modn)是一个数论运算)1977年由美国麻省理工学院的三位教授(3)卸载:如果S0,则令S:=S-ak,返回(1)。至于(p,q),可以是Bob的另一部分私钥,也可以是对所有人(包括Bob)都保密的。一个根的(modp)、(modq)值是p-mp、mq;C=18191223(mod 2867)如何判定一个给定的整数是素数?)ln)(ln(ln(exp(ppO.logln)ln)(lnln(lnexp()ln)(ln(lnexp(;
3、2)(ln(lnexp()ln)(ln(lnexp(2log2pppppppppppp)lnlnln(expnnO)lnlnln2(expppO)ln(ln)(ln92.1(exp(3231nnO(1)给定x,计算y=f(x)是容易的选择两个大的素数p和q。=18191024 1819128 181964 18194 18192 18191(mod 2867)容易,只需要不超过N1次加法。是满足下列条件的函数f:至少在在当前的计算水平之下是不能实现的。7560mod561=1这一体制的出现在密码学史上是划时代的事件,它为解决计算机信息网中的安全提供了新的理论和技术基础。if bi=1a1+a2
4、+a3+aN-1Ua1MUa2(modM)=b2,由n的值求解(p,q)的值,即求解n的大整数分解n=pq,是一个公认的数学难题(虽然至今并没有证明),暂时还没有有效的算法。格中的任何其它向量都能唯一地表示为这几个向量的整数线性组合。Hellman1976提出,同时R.m(2,1)(modp)=p-mp;找到一个e满足ed1(mod z)。用RSA算法加密与解密的过程:例:明文=“RSA ALGORITHM”(1)明文用数字表示 空白=00,A=01,B=02,Z=26(两位十进制数表示)1819 0100 0112 0715 1809 2008 1300(2)利用加密变换公式 C=mPK m
5、od r,即C=18191223 mod 2867=2756PK=1223=10011000111 =210+27+26+22+21+20 =1024+128+64+4+2+1 C=18191223(mod 2867)=18191024 1819128 181964 18194 18192 18191(mod 2867)=27562756 2001 0542 0669 2347 0408 1815选择两个大素数p和q,通常要求每个均大于10100。u计算npq和z(p1)(q1)。u选择一与z互素的数、令其为d。u找到一个e满足ed1(mod z)。选好这些参数后,将明文划分成块,使得每个明文
6、报文P长度m满足0mn。加密P时,计算CPe(mod n),解密C时计算PCd(mod n)。由于模运算的对称性,可以证明,在确定的范围内,加密和解密函数是互逆的。为实现加密,需要公开(e,n),为实现解密需要(d,n)。如何计算ab mod n?如何判定一个给定的整数是素数?如何找到足够大的素数p和q?要点1:(a x b)mod n=(a mod n)x(b mod n)mod n 要点2:a16=aaaaaaaaaaaaaaaa =a2,a4,a8,a16更一般性的问题:amm的二进制表示为bkbk-1b0,则 计算am mod nam mod n=a(2i)mod n =a(2i)mo
展开阅读全文