最新主成分分析讲义课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新主成分分析讲义课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 成分 分析 讲义 课件
- 资源描述:
-
1、 1 基本思想 主成分概念首先由 Karl Parson在1901年引进,当时只对非随机变量来讨论的。1933年Hotelling将这个概念推广到随机变量。用途:用途:在回归分析、聚类分析、判别分析中降维;简化对样本进行排序的问题。2x1x1F2F主成分分析的几何解释平移、旋转坐标轴2x1x1F2F主成分分析的几何解释平移、旋转坐标轴2x1x1F2F 主成分分析的几何解释平移、旋转坐标轴2x1x1F2F主成分分析的几何解释平移、旋转坐标轴 如果我们将 轴和 轴先平移,再同时按逆时针方向旋转角度,得到新坐标轴 和 。2x1x1F2F 根据旋转变换的公式:cossinsincos212211xxy
2、xxyxU2121cossinsincosxxyy正交矩阵,即有为旋转变换矩阵,它是UIUUUU,1 Fl,F2除了可以对包含在Xl,X2中的信息起着浓缩作用之外,还具有不相关的性质,这就使得在研究复杂的问题时避免了信息重叠所带来的虚假性。二维平面上的个点的方差大部分都归结在Fl轴上,而F2轴上的方差很小。Fl和F2称为原始变量x1和x2的综合变量。F简化了系统结构,抓住了主要矛盾。一、两个线性代数的结论一、两个线性代数的结论 1、若A是p阶实对称阵,则一定可以找到正交阵U,使ppp00000021AUU1pii.2.1,其中 是A A的特征根。2、若上述矩阵的特征根所对应的单位特征向量为 p
3、pppppuuuuuuuuu212222111211),(p1uuU 则实对称阵 属于不同特征根所对应的特征向量是正交的,即有p1uu,令AIUUUU 二、主成分的推导 (一)(一)第一主成分第一主成分设X的协方差阵为2212222111221pppppx由于x为非负定的对称阵,则有利用线性代数的知识可得,必存在正交阵U,使得p001UUX 其中1,2,p为x的特征根,不妨假设1 2 p。而U恰好是由特征根相对应的特征向量所组成的正交阵。ppppppuuuuuuuuu212222111211),(p1uuUpiiiuuu,21iUiPi,2,1 下面我们来看,是否由U的第一列元素所构成为原始变
4、量的线性组合是否有最大的方差。设有P维正交向量11111ppFa Xa X a X1211111)(aUUaaapFV121111,paaaa12p 12112p1puuau,u,uaupii121)(ua piii11auuaaUUa1aa1 1 1piiiia u u a21()piiia u 当且仅当a1=u1时,即 时,有最大的方差1。因为Var(F1)=U1xU1=1。如果第一主成分的信息不够,则需要寻找第二主成分。ppXuXuF11111(二)(二)第二主成分第二主成分在约束条件 下,寻找第二主成分 0),cov(21FFppXuXuF21122因为所以0),cov(),cov(1
5、21122121uuuuxuxuFF 则,对p维向量 ,有012uupiiipiiiiuuFV122122222)()(uuuuuu pii222)(uu22upiii122uuuu2 22uUUu2 222uu 2 ppXuXuXuF22221122 所以如果取线性变换:则 的方差次大。2F 类推 ppppppppppXuXuXuFXuXuXuFXuXuXuF22112222112212211111写为矩阵形式:XUFppppppuuuuuuuuu212222111211),(p1uuU),(21pXXXX4 4 主成分的性质主成分的性质一、均值一、均值UU)(xE二、方差为所有特征根之和二
展开阅读全文