最新SQUID磁敏传感器课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新SQUID磁敏传感器课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 SQUID 传感器 课件
- 资源描述:
-
1、灵敏度极高灵敏度极高:可达10-15T,比灵敏度较高的光泵式磁敏传感器要高出几个数量级;第三节第三节 SQUIDSQUID磁敏传感器磁敏传感器SQUID磁敏传感器是一种新型的灵敏度极高的磁敏传感器,是以约瑟夫逊(Jose Phson)效应为理论基础,用超导材料制成的,在超导状态下检测外磁场变化的一种新型磁测装置。特点特点频带宽:频带宽:响应频率可从零响应到几kHz。测量范围宽测量范围宽:可从零场测量到几kT;该图是两块超导体中间隔着一厚度仅1030的绝缘介质层而形成的“超导体绝缘层超导体”的结构,通常称这种结构为超导隧道结,也称约瑟夫逊结。中间的薄层区域称为结区。这种超导隧道结具有特殊而有用的
2、性质。超导电子能通过绝缘介质层,表现为电流能够无阻挡地流过,表明夹在两超导体之间的绝缘层很薄且具有超导性。约瑟夫逊结能够通过很小超导电流的现象,称为超导隧道结的约瑟夫逊效应超导隧道结的约瑟夫逊效应,也称直流约瑟夫逊效应直流约瑟夫逊效应。超导结在直流电压作用下可产生交变电流,从而辐射和吸收电磁波。这种特性称为交流约瑟夫逊效应交流约瑟夫逊效应。绝缘层 超导体超导体超导结示意图4、约瑟夫逊效应 直流约瑟夫逊效应表明,超导隧道结的介质层具有超导体的一些性质,但不能认为它是临界电流很小的超导体,它还有一般超导体所没有的性质。实验证明,当结区两端加上直流电压时,结区会出现高频的正弦电流,其频率正比于所加的
3、直流电压,即 f=KV式中 K=2e/h=483.61012Hz/V。根据电动力学理论高频电流会从结区向外辐射电磁波。可见,超导隧道结在直流电压作用下,产生交变电流,可见,超导隧道结在直流电压作用下,产生交变电流,辐射和吸收电磁波,这种特性即交流约瑟夫逊效应。辐射和吸收电磁波,这种特性即交流约瑟夫逊效应。约瑟夫逊的直流效应受着磁场的影响。而临界电流IC对磁场亦很敏感,即随着磁场的加大临界电流IC逐渐变小,如图所示。超导结的Ic-H曲线01234562010H=0Ic5、ICH 特性根据量子力学理论,超导结允许通过的最大超导电流Imax与的关系式沿介质层及其两侧超导体边缘透入超导结的磁通量;0磁
4、通量子;IC(0)没有外磁场作用时,超导结的临界电流。00sin)0()(CCIIIC是的周期函数超导结临界电流随外加磁场而周期起伏变化的原理,完全可用于测量磁场中。例如,若在超导结的两端接上电源,电压表无显示时,电流表所显示的电流是为超导电流;电压表开始有电压显示时,则电流表所显示的电流为临界电流IC,此时,加入外磁场后,临界电流将有周期性的起伏,且其极大值逐渐衰减,振荡的次数n乘以磁通量子0,可得到透入超导结的磁通量=n0。而磁通量和磁场H成正比关系,如果能求出,磁场H即可求出。同理,若外磁场H有变化,则磁通量亦随变化,在此变化过程中,临界电流的振荡次数n乘以0即得到磁通量的大小,亦反映了
5、外磁场变化的大小。因而,可利用超导技术测定外磁场的大小及其变化。临界电流临界电流随外磁场周期起伏变化,这是由于在一定磁场随外磁场周期起伏变化,这是由于在一定磁场作用下,超导结各点的超导电流具有确定的相位。相位作用下,超导结各点的超导电流具有确定的相位。相位相反的电流互相抵消;相位相同的电流互相迭加。相反的电流互相抵消;相位相同的电流互相迭加。测磁原理测磁原理TmmTdL42112150102101102测量外磁场的灵敏度与测定振荡的次数n的精度及的大小有关。设n可测准至一个周期的1/100,则测得最小的变化量应为0/100=210-15Tm2。若假设磁场在超导结上的透入面积为Ld(L是超导结的
6、宽度,一般为0.lmm左右;d是磁场在介质层及其两侧超导体中透入的深度),则对SnSnOSn结来说,锡的穿透深度=500,亦即d=2=1000。则,Ld 110-11m2,这里临界电流的起伏周期是磁通量子0,0=210-15Tm2,对于透入面积Ld为110-11m2的锡结而言,临界电流的起伏周期是:二、二、SQUIDSQUID磁敏传感器的构成类型磁敏传感器的构成类型 超导量子干涉器(超导量子干涉器(SQUID)是指由超导隧)是指由超导隧道结和超导体组成的闭合环路。其临界电流是道结和超导体组成的闭合环路。其临界电流是环路中外磁通量的周期函数;其周期则为磁通环路中外磁通量的周期函数;其周期则为磁通
7、量子量子0,它具有宏观干涉现象。通常,人们称,它具有宏观干涉现象。通常,人们称这样的超导环路为超导量子干涉器件。这样的超导环路为超导量子干涉器件。射频超导量子干涉器(射频超导量子干涉器(RF SQUID)直流超导量子干涉器(直流超导量子干涉器(DC SQUID)超导量子干涉器件有两种类型:CTRTRF振荡器(一)(一)RF SQUID射频射频超导量子超导量子干干涉器涉器含含有一个超导隧道结的超有一个超导隧道结的超导环,在超导环中存在导环,在超导环中存在超导量子干涉效应。测超导量子干涉效应。测量时,采用射频电流进量时,采用射频电流进行偏置,其构成形式如行偏置,其构成形式如图所示。图所示。超导环超
8、导环偏置的目的是使超导结周期地达到临界状态,使环外磁通以量子化的形式进入环内,从而在超导环内的超导电流产生周期变化,这样在结上产生周期电动势,实现磁测。采用交流偏置,将一射频磁场耦合到超导环上,在外磁通作用下,测量超导结产生电动势。+输入线圈RF线圈铌圆柱压板铌碗隧道结铌柱输入线圈RF线圈(a)(b)(c)(d)(e)(f)铌膜微桥RF SQUID结构图IAIBC1C212ABIDC SQUID构成示意图(二)(二)DC SQUID直流超导量子干涉器(直流超导量子干涉器(DC SQUID)是在一块超)是在一块超导体上由两个超导隧道结而构成的超导环。超导导体上由两个超导隧道结而构成的超导环。超导
9、环中存在超导量子干涉效应,测量时用直流电流环中存在超导量子干涉效应,测量时用直流电流进行偏置,如图所示。进行偏置,如图所示。E铌螺钉聚酯膜铌圆柱体微桥铅膜条铌膜条石英管铅铟合金膜隧道脂金属条铌膜条T形铅膜(a)(b)(c)DC SQUID 结构图 应用超导量子干涉器检测磁通量变化时,除经常使用的锁相放大技术外,还采用超导磁通变换器方法超导磁通变换器方法零磁通法零磁通法零电流方法零电流方法 三、三、SQUID SQUID 磁敏传感器的检测方法磁敏传感器的检测方法L1至放大器L2L环同轴线超导磁通变换器示意图 利用磁通变换器可以提高测量磁场及测量磁场梯度的灵敏度,同时还可以完成其它一些有关磁的测量
10、,如测定物质的磁化率等。(一)超导磁通变换器方法(一)超导磁通变换器方法 超导磁通变换器由SQUID加上两个互相连接的线圈构成,如图所示。图中的L环是超导环的电感,L2是与超导环相耦合的线圈电感,L1是与外磁通相耦合,且与L2相连的线圈电感。音频振荡器射频振荡器相敏检波器放大器积分器VfRfCTLT(a)音频振荡器放大器VfRfLTCT调制线圈(b)积分器相敏检波器(二)零磁通法(二)零磁通法谐振线圈超导环超导环 (三)零电流法(三)零电流法采用反馈方式,反馈电流不是加到直接与超导环耦合的线圈上,而是加到与磁通变换器附加线圈Lf相耦合的反馈线圈上,如图所示。LTCTVfRfLi Lf Lp电子
11、线路Mi反馈线圈探测线圈输入线圈磁通变换器中的电流为零;磁通变换器中的电流为零;在探测线圈附近的磁场畸变不大。在探测线圈附近的磁场畸变不大。优点:超导环超导核磁共振仪,超导核磁共振磁力仪超导核磁共振测井仪四、四、SQUIDSQUID磁敏传感器的应用磁敏传感器的应用磁测量超导磁力仪,超导磁力梯度仪 超导岩石磁力仪,超导磁化率仪电测量超导检流计,超导微伏计,超导电位计重力测量超导重力仪,超导加速仪 超导重力梯度仪超导辐射检测器辐射测量磁共振测量 磁通门式磁敏传感器又称为磁饱和式磁敏传感器。利用某些高导磁率的软磁性材料(如坡莫合金)作磁利用某些高导磁率的软磁性材料(如坡莫合金)作磁芯,以其在交变磁场
12、作用下的磁饱和特性及法拉第电芯,以其在交变磁场作用下的磁饱和特性及法拉第电磁感应原理研制成的测磁装置。磁感应原理研制成的测磁装置。第四节第四节 磁通门式磁敏传感器磁通门式磁敏传感器最大特点最大特点:适合在零磁场附近工作的弱磁场进行测量。传感器可作成体积小,重量轻、功耗低,既可测纵向向量T、垂直向量Z,也可测T、Z,不受磁场梯度影响,测量的灵敏度可达0.01nT,且可和磁秤混合使用组成磁测仪器。应用应用:航空、地面、测井等方面的磁法勘探,在军事上,也可用于寻找地下武器(炮弹、地雷等)和反潜。还可用于预报天然地震及空间磁测等。一、磁通门式磁敏传感器的物理基础一、磁通门式磁敏传感器的物理基础磁饱和现
13、象饱和磁感应强度Bs饱和磁场强度Hs(一)磁滞回线和磁饱和现象(一)磁滞回线和磁饱和现象BAHsHcFBr-HcE-BrDC静态磁滞回线示意图BsHOB磁滞现象:磁感应强度的变化滞后于磁场H的变化最大剩磁BrBr,Bs,Hs及矫顽力Hc是磁性材料的四个重要参数。磁通门传感器使用软磁性材料。动态导磁率dHdBd定义:物体在磁场中被磁化后,在磁化方向上会产生伸长或缩短现象。几种磁性材料的伸缩系数3020100-10-20-30l/lFeCoNi010203040 H/10-4T45 坡莫合金(二)磁致伸缩现象(二)磁致伸缩现象饱和磁致伸缩系数lls内容:不论何种原因使通过一回路所包围面积内的磁通量
14、发生变化时,回路上产生的感应电动势E与磁通随时间t的变化率的负值成正比。dtdkE(三)法拉第电磁感应定律(三)法拉第电磁感应定律式中 k比例系数。圆形磁芯跑道形磁芯长方形磁芯闭合式磁芯长条形双磁芯长条形单磁芯非闭合式磁芯磁芯从这几种磁芯的性能来说,以圆形较好,跑道形次之。在磁场的分量测量中,用跑道形磁芯较多。磁通门传感器的磁芯几何形状二、磁通门式磁敏传感器的二次谐波法测磁原理二、磁通门式磁敏传感器的二次谐波法测磁原理1.长轴状跑道形磁芯长轴状跑道形磁芯4132ff2跑道型磁芯机构示意图1 灵敏元件架;2初级线圈3输出线圈;4坡莫合金环 如图所示,一般沿长轴方向的尺寸远大于短轴方向的尺寸,故当
15、沿长轴方向磁化时,要比沿短轴方向磁化时的退磁作用及退磁系数小得多。这样,就可以认为跑道形磁芯仅被沿长轴方向的磁场所磁化。在实践中,也仅测量沿长轴方向的磁场分量。L1L2LSH1=2HmsintH2=-2HmsintHHe-HsBm(a)(b)=tH2H1H=te1e2E(d)H=tBB1B2(c)图2.4-4 传感器测磁原理示意图BtHHHHHtHHHHHmeemeesin2sin22211tHHBtHHBmedmedsin2sin221smedsBHHBsin21B2211222BsmedsBHHBsin22222111E0cos10208SHsm2E0cos10208SHsm2211222
16、222110cos1020cos102088SHSHEsmsmS E s是属周期性的重复脉冲,故可用富氏分解法计算Es的二次谐波分量2222111122由分段函数组式可知,Es是一奇函数。富氏分解中的余弦项的系数an=0,a2=0。计算富氏分解中正弦项的系数b2:2.2.富氏分解法富氏分解法tHHHfSnEemssdS2sin10168输入波带通滤波器放大器相敏检波器积分器地磁补偿稳流器-9V稳压器+9V稳压器低通滤波器-9V输入+9V输入0-5V电压表反馈电阻W1W2W3选频功放二分频延时器二分频电子温度计与温度补偿电子温度计与温度补偿W4图2.4-5 CCM-1型磁通门磁力仪方框图感应式磁
17、敏传感器是以天然场或人工场为场源,根据法拉第电磁感应原理,采用某些特殊技术研制成的测磁装置,可用于测量交变场中磁场变化率。第五节 感应式磁敏传感器 一、感应式磁敏传感器的物理基础 dtdnn法拉第电磁感应定律 屏蔽铜箔铝管铝盖输出磁芯线圈图2.5-4 长螺旋管式传感器构成示意图交变场薄板状良导体内感应电流示意图R交变场示意图T发射机T,向发射线圈供给交变电流,它在线圈周围则建立起交变电磁场,称为一次场。如果地下有良导矿体存在,则矿体被一次场所激发而在矿体内产生感应电流,这是一种涡旋电流(涡流),此涡流在空间也产生交变磁场向周围发射,这种场称为二次场或异常场。一、霍耳磁敏传感器一、霍耳磁敏传感器
18、 二、磁敏二极管和磁敏三极管二、磁敏二极管和磁敏三极管 三、磁敏电阻三、磁敏电阻 第六节第六节 半导体磁敏传感器半导体磁敏传感器一、霍耳磁敏传感器一、霍耳磁敏传感器(一)霍耳效应(一)霍耳效应 通电的导体或半导体,在垂直于电流和磁通电的导体或半导体,在垂直于电流和磁场的方向上将产生电动势的现象。场的方向上将产生电动势的现象。+I+lwd霍耳效应原理图VH(二)霍耳磁敏传感器工作原理(二)霍耳磁敏传感器工作原理 设霍耳片的长度为l,宽度为w,厚度为d。又设电子以均匀的速度v运动,则在垂直方向施加的磁感应强度B的作用下,它受到洛仑兹力q电子电量(1.6210-19C);v电于运动速度。同时,作用于
19、电子的电场力 qvBfLwqVqEfHHE/wqVqvBH/当达到动态平衡时dnqvwdjwIdnqwIv/pqdIBVH/霍耳电势VH与 I、B的乘积成正比,而与d成反比。于是可改写成:dIBRVHHHR电流密度j=nqvnN型半导体中的电子浓度N型半导体P型半导体 霍耳系数,由载流材料物理性质决定。材料电阻率pP型半导体中的孔穴浓度型)(型)(PqpRNqnRHH11载流子迁移率,=v/E,即单位电场强度作用下载流子的平均速度。金属材料,电子金属材料,电子很高但很高但很小,绝缘材料,很小,绝缘材料,很高但很高但很小。很小。故为获得较强霍耳效应,霍耳片全部采用半导体材料制成。故为获得较强霍耳
20、效应,霍耳片全部采用半导体材料制成。设 KH=RH /d KH霍耳器件的乘积灵敏度。它与载流材料的物理性质和几何尺寸有关,表示在单位磁感应强度和单位控制电流时霍耳电势的大小。若磁感应强度B的方向与霍耳器件的平面法线夹角为时,霍耳电势应为:VH KH I B VH KH I B cos 注意:当控制电流的方向或磁场方向改变时,输出注意:当控制电流的方向或磁场方向改变时,输出霍霍耳电耳电势的方向也改变。但当磁场与电流同时改变方势的方向也改变。但当磁场与电流同时改变方向时,向时,霍耳电霍耳电势并不改变方向。势并不改变方向。霍耳器件片(a)实际结构(mm);(b)简化结构;(c)等效电路外形尺寸:6.
21、43.10.2;有效尺寸:5.42.70.2(三)霍耳磁敏传感器(霍耳器件)(三)霍耳磁敏传感器(霍耳器件)dsl(b)2.15.42.7AB0.20.50.3CD(a)w电流极霍耳电极R4ABCDR1R2R3R4(c)霍耳输出端的端子C、D相应地称为霍耳端或输出端。若霍耳端子间连接负载,称为霍耳负载电阻或霍耳负载。电流电极间的电阻,称为输入电阻,或者控制内阻。霍耳端子间的电阻,称为输出电阻或霍耳侧内部电阻。器件电流(控制电流或输入电流):流入到器件内的电流。电流端子A、B相应地称为器件电流端、控制电流端或输入电流端。H图2.6-4 霍耳器件符号AAABBBCCCDDD关于霍耳器件符号,名称及
22、型号,国内外尚无统一规定,为叙述方便起见,暂规定下列名称的符号。控制电流I;霍耳电势VH;控制电压V;输出电阻R2;输入电阻R1;霍耳负载电阻R3;霍耳电流IH。图中控制电流I由电源E供给,R为调节电阻,保证器件内所需控制电流I。霍耳输出端接负载R3,R3可是一般电阻或放大器的输入电阻、或表头内阻等。磁场B垂直通过霍耳器件,在磁场与控制电流作用下,由负载上获得电压。VHR3VBIEIH霍耳器件的基本电路R实际使用时,器件输入信号可以是I或B,或者IB,而输出可以正比于I或B,或者正比于其乘积IB。IKBIdRVIHHVKVRKBVdRRVVHH1111上两式是霍耳器件中的基本公式。即:输入电流
23、或输入电压和霍耳输出电势完全呈线性关系。如果输入电流或电压中任一项固定时,磁感应强度和输出电势之间也完全呈线性关系。同样,若给出控制电压V,由于V=R1I,可得控制电压和霍耳电势的关系式设霍耳片厚度d均匀,电流I和霍耳电场的方向分别平行于长、短边界,则控制电流I和霍耳电势VH的关系式(四)、基本特性(四)、基本特性 1、直线性:指霍耳器件的输出电势VH分别和基本参数I、V、B之间呈线性关系。VH=KHBI 2、灵敏度:可以用乘积灵敏度或磁场灵敏度以及电流灵敏度、电势灵敏度表示:KH乘积灵敏度,表示霍耳电势VH与磁感应强度B和控制电流I乘积之间的比值,通常以mV/(mA0.1T)。因为霍耳元件的
24、输出电压要由两个输入量的乘积来确定,故称为乘积灵敏度乘积灵敏度。KB磁场灵敏度,通常以额定电流为标准。磁场灵敏度等于霍耳元件通以额定电流时每单位磁感应强度对应的霍耳电势值。常用于磁场测量等情况。KI电流灵敏度,电流灵敏度等于霍耳元件在单位磁感应强度下电流对应的霍耳电势值。若控制电流值固定,则:VHKBB若磁场值固定,则:VHKI I3、额定电流:霍耳元件的允许温升规定着一个最大控制电流。4、最大输出功率 在霍耳电极间接入负载后,元件的功率输出与负载的大小有关,当霍耳电极间的内阻R2等于霍耳负载电阻R3时,霍耳输出功率为最大。22max4/RVPHO5、最大效率 霍耳器件的输出与输入功率之比,称
25、为效率,和最大输出对应的效率,称为最大效率,即:1222maxmax4/RIRVPPHinO6、负载特性 当霍耳电极间串接有负载时,因为流过霍耳电流,在其内阻上将产生压降,故实际霍耳电势比理论值小。由于霍耳电极间内阻和磁阻效应的影响,霍耳电势和磁感应强度之间便失去了线性关系。如图所示。8060402000.20.40.60.81.0VH/mV=7.0=1.5=3.0B/T理论值理论值实际值实际值VHR3I霍耳电势的负载特性=R3/R2 霍耳电势随负载电阻值而改变的情况7、温度特性:指霍耳电势或灵敏度的温度特性,以及输入阻抗和输出阻抗的温度特性。它们可归结为霍耳系数和电阻率(或电导率)与温度的关
展开阅读全文