最新MOS-场效应晶体管课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新MOS-场效应晶体管课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 MOS 场效应 晶体管 课件
- 资源描述:
-
1、2023/1/29MOS 场效应晶体管场效应晶体管2023/1/29MOSFET的三个基本几何参数的三个基本几何参数n 栅长:Ln 栅宽:Wn 氧化层厚度:toxtoxSDn(p)poly-Sidiffusionp+/n+p+/n+WGLn Lmin、Wmin和 tox 由工艺确定n Lmin:MOS工艺的特征尺寸(feature size)决定MOSFET的速度和功耗等众多特性n L和W由设计者选定n 通常选取L=Lmin,由此,设计者只需选取Wn W影响MOSFET的速度,决定电路驱动能力和功耗2023/1/29MOSFET的伏安特性的伏安特性:电容结构n 当栅极不加电压或加负电压时,栅极
2、下面的区域保持P型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN结的漏电流之外,不会有更多电流形成。n 当栅极上的正电压不断升高时,P型区内的空穴被不断地排斥到衬底方向。当栅极上的电压超过阈值电压VT,在栅极下的P型区域内就形成电子分布,建立起反型层,即N型层,把同为N型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。这时,栅极电压所感应的电荷Q为,Q=CVge式中Vge是栅极有效控制电压。2023/1/29非饱和时,在漏源电压Vds作用下,这些电荷Q将在时间内通过沟道,因此有dsdsVLELL 2MOS的伏安特性的伏安特性电荷在沟道中的渡越时间为载流子速
3、度,Eds=Vds/L为漏到源方向电场强度,Vds为漏到源电压。为载流子迁移率:n n=650 cm2/(V.s)电子迁移率(nMOS)n p=240 cm2/(V.s)空穴迁移率(pMOS)2023/1/29MOSFET的伏安特性的伏安特性方程推导方程推导非饱和情况下,通过MOS管漏源间的电流Ids为:dsTgsgedsdsTgsoxoxdsdsTgsoxoxdsgeoxoxdsgedsVVVVVVVVLWtVVVVLWtVVLtWLVLCVQI21with 21 )21(222=.0 栅极-沟道间 氧化层介电常数,=4.5,0=0.88541851.10-11 C.V-1.m-1Vge是栅
4、级对衬底的有效控制电压其值为栅级到衬底表面的电压减VT2023/1/29当Vgs-VT=Vds时,满足:Ids达到最大值Idsmax,其值为Vgs-VT=Vds,意味着近漏端的栅极有效控制电压Vge=Vgs-VT-Vds=Vgs-Vds-VT=Vgd-VT=0感应电荷为0,沟道夹断,电流不会再增大沟道夹断,电流不会再增大,因而,这个 Idsmax 就是饱和电流。0dsdsdVdI2Tgsoxoxdsmax21VVLWtIMOS的伏安特性的伏安特性漏极饱和电流漏极饱和电流2023/1/29MOSFET特性曲线n 在非饱和区 线性工作区n 在饱和区 (Ids 与 Vds无关).MOSFET是平方律
5、平方律器件!IdsVds0线性区饱和区击穿区11bVaIgsCVdsds22TgsdsVVaI2023/1/295.1.2 MOSFET电容的组成电容的组成MOS电容是一个相当复杂的电容,有多层介质:首先,在栅极电极下面有一层SiO2介质。SiO2下面是P型衬底,衬底是比较厚的。最后,是一个衬底电极,它同衬底之间必须是欧姆接触。MOS电容还与外加电压有关。1)当Vgs0时,栅极上的正电荷排斥了Si中的空穴,在栅极下面的Si表面上,形成了一个耗尽区。耗尽区中没有可以自由活动的载流子,只有空穴被赶走后剩下的固定的负电荷。这些束缚电荷是分布在厚度为Xp的整个耗尽区内,而栅极上的正电荷则集中在栅极表面
6、。这说明了MOS电容器可以看成两个电容器的串联。l以SiO2为介质的电容器Coxl以耗尽层为介质的电容器CSi 总电容C为:比原来的Cox要小些。111SioxCCC2023/1/29MOS电容电容束缚电荷层厚度耗尽层电容的计算方法同PN结的耗尽层电容的计算方法相同:利用泊松公式式中NA是P型衬底中的掺杂浓度,将上式积分得耗尽区上的电位差:从而得出束缚电荷层厚度ASiSiqN1 1221pSiAASiXqNdxdxqNASipNqX22023/1/29MOS电容电容 耗尽层电容这时,在耗尽层中束缚电荷的总量为,它是耗尽层两侧电位差的函数,因此,耗尽层电容为,是一个非线性电容,随电位差的增大而减
7、小。ASiASiApAqNWLNqWLNWLXqNQ22q 221221ASiASiSiqNWLqNWLdvdQC2023/1/29MOS电容电容耗尽层电容特性n随着Vgs的增大,排斥掉更多的空穴,耗尽层厚度Xp增大,耗尽层上的电压降就增大,因而耗尽层电容CSi就减小。耗尽层上的电压降的增大,实际上就意味着Si表面电位势垒的下降,意味着Si表面能级的下降。n一旦Si表面能级下降到P型衬底的费米能级,Si表面的半导体呈中性。这时,在Si表面,电子浓度与空穴浓度相等相等,成为本征半导体。2023/1/29MOS电容电容耗尽层电容特性(续)3)若Vgs再增大,排斥掉更多的空穴,吸引了更多的电子,使得
8、Si表面电位下降,能级下降,达到低于P型衬底的费米能级。这时,Si表面的电子浓度超过了空穴的浓度,半导体呈N型,这就是反型层。不过,它只是一种弱反型层。因为这时电子的浓度还低于原来空穴的浓度。随着反型层的形成,来自栅极正电荷发出的电力线,已部分地落在这些电子上,耗尽层厚度的增加就减慢减慢了,相应的MOS电容CSi的减小也减慢了。2023/1/294)当Vgs增加,达到VT值,Si表面电位的下降,能级下降已达到P型衬底的费米能级与本征半导体能级差的二倍。它不仅抵消了空穴,成为本征半导体,而且在形成的反型层中,电子浓度已达到原先的空穴浓度这样的反型层就是强反型层。显然,耗尽层厚度不再增加,CSi也
9、不再减小。这样,就达到最小值Cmin。最小的CSi是由最大的耗尽层厚度Xpmax计算出来的。oxSioxSiCCCCCMOS电容电容耗尽层电容特性(续)2023/1/29MOS电容电容凹谷特性5)当Vgs继续增大,反型层中电子的浓度增加,来自栅极正电荷的电力线,部分落在这些电子上,落在耗尽层束缚电子上的电力线数目就有所减少。耗尽层电容将增大。两个电容串联后,C将增加。当Vgs足够大时,反型层中的电子浓度已大到能起到屏蔽作用,全部的电力线落在电子上。这时,反型层中的电子将成为一种镜面反射,感应全部负电荷,于是,C=Cox。电容曲线出现了凹谷形,如图6.2。必须指出,上述讨论未考虑到反型层中的电子
10、是哪里来的。若该MOS电容是一个孤立的电容,这些电子只能依靠共价键的分解来提供,它是一个慢过程,ms级。2023/1/29MOS电容电容测量若测量电容的方法是逐点测量法一种慢进程,那么将测量到这种凹谷曲线。图 5.22023/1/29MOS电容电容凹谷特性测量n若测量电容采用高频方法,譬如,扫频方法,电压变化很快。共价键就来不及瓦解,反型层就无法及时形成,于是,电容曲线就回到Cox值。n然而,在大部分场合,MOS电容与n+区接在一起,有大量的电子来源,反型层可以很快形成,故不论测量频率多高,电压变化多快,电容曲线都呈凹谷形。2023/1/295.1.3 MOS电容电容的计算的计算MOS电容C仅
11、仅是栅极对衬底的电容,不是外电路中可以观察的电容Cg,Cs 和Cd。MOS电容C对Cg,Cd有所贡献。在源极和衬底之间有结电容Csb,在漏极和衬底之间也有结电容Cdb。另外,源极耗尽区、漏极耗尽区都渗进到栅极下面的区域。又,栅极与漏极扩散区,栅极与源极扩散区都存在着某些交迭,故客观上存在着Cgs和Cgd。当然,引出线之间还有杂散电容,可以计入Cgs和Cgd。图 5.32023/1/29Cg、Cd的值还与所加的电压有关:1)若若VgsVT,沟道建立,MOS管导通。MOS电容是变化的,呈凹谷状,从Cox下降到最低点,又回到Cox。这时,MOS电容C对Cg,Cd都有贡献,它们的分配取决于MOS管的工
12、作状态。MOS电容的计算电容的计算2023/1/29MOS电容的计算电容的计算n 若处于非饱和状态非饱和状态,则按1/3与2/3分配,即Cg=Cgs+2/3CCd=Cdb+1/3C 那是因为在非饱和状态下,与栅极电荷成比例的沟道电流为 由Vgs和Vds的系数可知栅极电压Vgs对栅极电荷的影响力,与漏极电压Vds对栅极电荷的影响力为2:1的关系,故贡献将分别为 2/3与1/3。dsdsTgsoxdsVVVVLWtI212023/1/29MOS电容的计算电容的计算(续续)n 若处于饱和饱和状态,则表明沟道电荷已与Vds无关,沟道已夹断。那么,Cg=Cgs+2/3 C,Cd=Cdb+0n 在饱和状态
13、下,沟道长度受到Vds的调制,L变小2ds21TgsoxVVLWtI2ds21TgsoxVVLLWtI2023/1/29MOS电容的计算电容的计算(续续)当Vds增加时,L增大,Ids增加,那是因为载流子速度增加了,它与C的分配无关。然而,L的增大使得漏极耗尽层宽度有所增加,增大了结电容。故,Cg=Cgs+2/3C Cd=Cdb+0+Cdb2023/1/29深亚微米CMOS IC工艺的寄生电容(数据)Cap.N+Act.P+Act.PolyM1M2M3UnitsArea(sub.)5269378325108aF/um2Area(poly)541811aF/um2Area(M1)46 17aF/
14、um2Area(M2)49aF/um2Area(N+act.)3599aF/um2Area(P+act.)3415aF/um2Fringe(sub.)249261aF/um2023/1/29深亚微米CMOS IC工艺的寄生电容(图示)PolyPolyElectrodeMetal1Metal2PolyP+P+P+N+N+Metal3N_wellSUB88013832213109514503452648159864463614308363214086734123517383929625762Cross view of parasitic capacitor of TSMC_0.35um CMOS
15、technology2023/1/295.2 MOSFET的阈值电压的阈值电压VT阈值电压是MOS器件的一个重要参数。按MOS沟道随栅压正向和负向增加而形成或消失的机理,存在着两种类型的MOS器件:l耗尽型耗尽型(Depletion):沟道在Vgs=0时已经存在。当Vgs“负”到一定程度时截止。一般情况,这类器件用作负载。l增强型增强型(Enhancement):在正常情况下它是截止的,只有当Vgs“正”到一定程度,才会导通,故用作开关。2023/1/29VT的组成的组成=概念上讲,VT就是将栅极下面的Si表面从P型Si变为N型Si所必要的电压。它由两个分量组成,即:VT=Us+Vox=Us:
16、Si表面电位;=Vox:SiO2层上的压降。图 5.52023/1/291.Us 的计算的计算n 将栅极下面的Si表面从P/N型Si变为N/P型Si所必要的电压Us 与衬底浓度Na有关。n 在半导体理论中,P型半导体的费米能级是靠近满带的,而N型半导体的费米能级则是靠近导带的。要想把P型变为N型,外加电压必须补偿这两个费米能级之差。所以有:iabpSnNqkTqUln22图 5.42023/1/292.Vox的计算的计算Vox根据右图从金属到氧化物到Si衬底Xm处的电场分布曲线导出:aiaSioxaNqnNkTCqNV2ox/ln40XMOS-toxXmEoxE0ExmE(X)2023/1/2
展开阅读全文