第二节数量积、向量积、混合积课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第二节数量积、向量积、混合积课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 数量 向量 混合 课件
- 资源描述:
-
1、目录 上页 下页 返回 结束*三、向量的混合积三、向量的混合积 第二节一、两向量的数量积一、两向量的数量积二、两向量的向量积二、两向量的向量积 数量积 向量积 *混合积 第八八章 目录 上页 下页 返回 结束 1M一、两向量的数量积一、两向量的数量积沿与力夹角为的直线移动,W1.定义定义设向量的夹角为,称 记作数量积(点积).引例引例.设一物体在常力 F 作用下,F位移为 s,则力F 所做的功为cossFsFW2Mbacosba的与为baba,s目录 上页 下页 返回 结束 记作故abj rPb2.性质性质为两个非零向量,则有baj rPcosbbabaaj rPbaaa)1(2aba,)2(
2、0baba ba0ba则2),(ba0,0ba,0 时当a上的投影为在 ab,0,时当同理bbacosba目录 上页 下页 返回 结束 3.运算律运算律(1)交换律(2)结合律),(为实数abbaba)()(ba)(ba)()(ba)(ba)(ba(3)分配律cbcacba事实上,当0c时,显然成立;时当0cc)(ba babcj rPacj rPcbabacj rPc cbaccj rPj rPacj rP cbcj rPccacb)(j rPbac目录 上页 下页 返回 结束 例例1.证明三角形余弦定理cos2222abbac证证:如图.则cos2222abbac,aBC,bACcBAAB
3、Cabcbac2c)()(babaaabbba22a2bcos2baccbbaa,设目录 上页 下页 返回 结束 4.数量积的坐标表示数量积的坐标表示设则,10zzyyxxbababa当为非零向量时,cos zzyyxxbababa222zyxaaa222zyxbbb由于 bacosba,kajaiaazyx,kbjbibbzyxba)(kajaiazyx)(kbjbibzyxii jjkk jikjik baba baba,两向量的夹角公式,得目录 上页 下页 返回 结束)(MB,)(MA BM例例2.已知三点,)2,1,2(),1,2,2(,)1,1,1(BAM AMB.A解解:,1,1
4、0,1,0 1则AMBcos10022213AMB求MBMAMA MB故目录 上页 下页 返回 结束 为 ).求单位时间内流过该平面域的流体的质量P(流体密度例例3.设均匀流速为 的流体流过一个面积为 A 的平面域,与该平面域的单位垂直向量,解解:单位时间内流过的体积:APAA的夹角为且vvncosvcosvnv nn为单位向量Av目录 上页 下页 返回 结束 二、两向量的向量积二、两向量的向量积引例引例.设O 为杠杆L 的支点,有一个与杠杆夹角为OQOLPQ符合右手规则OQFFsinOPsinOPMFOPOPM M矩是一个向量 M:的力 F 作用在杠杆的 P点上,则力 F 作用在杠杆上的力F
5、oPFMFM 目录 上页 下页 返回 结束 1.定义定义定义向量方向:(叉积)记作且符合右手规则模:向量积,,的夹角为设ba,c,acbccsinabbac称c的与为向量babacba引例中的力矩FOPM思考思考:右图三角形面积abba21S目录 上页 下页 返回 结束 2.性质性质为非零向量,则,0sin0或即aa)1(0ba,)2(0baba,0,0时当baba0basinab03.运算律运算律(2)分配律(3)结合律(证明略)abcba)(cbcaba)()(ba)(baba)1(证明证明:sinabba目录 上页 下页 返回 结束)(kajaiazyx)(kbjbibzyx4.向量积的
6、坐标表示式向量积的坐标表示式设则,kajaiaazyx,kbjbibbzyxba)(iibaxx)(jibayx)(kibazx)(ijbaxy)(kjbazy)(ikbaxz)(jkbayzibabayzzy)(jbabazxxz)(kbabaxyyx)()(jjbayy)(kkbazzijk目录 上页 下页 返回 结束 向量积的行列式计算法向量积的行列式计算法kjixayazaxbybzb,zyzybbaa,zxzxbbaayxyxbbaabaibabayzzy)(jbabazxxz)(kbabaxyyx)(kajaiaazyxkbjbibbzyx(行列式计算见上册附录I:P355P358
7、)目录 上页 下页 返回 结束 例例4.已知三点,)7,4,2(),5,4,3(,)3,2,1(CBA角形 ABC 的面积.解解:如图所示,CBASABC21kji222124)(21,4,622222)6(42114sin21AB AC21ACAB求三目录 上页 下页 返回 结束 一点 M 的线速度例例5.设刚体以等角速度 绕 l 轴旋转,导出刚体上 的表示式.Ml解解:在轴 l 上引进一个角速度向量使a其在 l 上任取一点 O,O作它与则点 M离开转轴的距离a且符合右手法则的夹角为,sinar,rOM vsinr,vr rvvv方向与旋转方向符合右手法则,r向径目录 上页 下页 返回 结束
8、*三、向量的混合积向量的混合积1.定义定义 已知三向量称数量混合积混合积.记作几何意义几何意义 为棱作平行六面体,底面积高h故平行六面体体积为hAV coscba)(cba,cba的为cba,Abaccba,以则其cosbaccba)(cbabacba目录 上页 下页 返回 结束 zyxzyxbbbaaaxcyczckji2.混合积的坐标表示混合积的坐标表示设xayazaxbybzbzxzxbbaayxyxbbaacba)(ba,),(zyxaaaa cbazyzybbaa,),(zyxbbbb),(zyxcccc,zyzybbaa,zxzxbbaayxyxbbaaxcyczc目录 上页 下页
9、 返回 结束 3.性质性质(1)三个非零向量共面的充要条件是0(2)轮换对称性:(可用三阶行列式推出)cbacba,a b cab ca bcabc目录 上页 下页 返回 结束 例例6.已知一四面体的顶点),(kkkkzyxA,3,2,1(k4),求该四面体体积.1A2A3A4A解解:已知四面体的体积等于以向量为棱的平行六面体体积的,61故 61V6112xx 12yy 12zz 13xx 13yy 13zz 14xx 14yy 14zz,21AA,31AA41AA413121AAAAAA目录 上页 下页 返回 结束 例例7.已知 A(1,2,0)、B(2,3,1)、C(4,2,2)、),(z
展开阅读全文