书签 分享 收藏 举报 版权申诉 / 23
上传文档赚钱

类型等比数列的概念及通项公式(一)课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4958135
  • 上传时间:2023-01-28
  • 格式:PPT
  • 页数:23
  • 大小:910.01KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《等比数列的概念及通项公式(一)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    等比数列 概念 公式 课件
    资源描述:

    1、学习目标学习目标1.掌握等比数列的定义,理解等比中项的概念掌握等比数列的定义,理解等比中项的概念2掌握等比数列的通项公式及推导过程掌握等比数列的通项公式及推导过程3能应用等比数列的定义及通项公式解决问题能应用等比数列的定义及通项公式解决问题回顾与复习回顾与复习1 1、等差数列定义:、等差数列定义:如果一个数列从第二项开始,每一项与如果一个数列从第二项开始,每一项与前一项的差等于前一项的差等于同一个常数同一个常数,这个数列,这个数列叫做叫做等差数列等差数列。数学表达式:数学表达式:d=ad=an n-a-an-1n-1(n2)(n2)或或d=ad=an+1n+1-a-an n2 2、等差数列的通

    2、项公式:、等差数列的通项公式:a an n=a=a1 1+(n-1)d(+(n-1)d(nNnN*)3 3、等差数列通项公式的推导方法:、等差数列通项公式的推导方法:a an n=a amm+(n-m)d+(n-m)d(n,mNn,mN*)归纳法累加法一、引入新课:一、引入新课:1.细胞分裂个数组成数列细胞分裂个数组成数列:1,2,4,8,16,鬃2.“一尺之棰一尺之棰,日取其半日取其半,万世不竭万世不竭.”得到数列得到数列:11111,24816鬃3.病毒感染的计算机数构成的数列病毒感染的计算机数构成的数列:2341,20,20,20,20,鬃(1)1,2,22,23,观察下列数列的相邻两项

    3、,并说出它们的观察下列数列的相邻两项,并说出它们的特点特点.1、定义:、定义:如果一个数列从第如果一个数列从第2项项起,每一项与它的前起,每一项与它的前一项的比都等于同一个一项的比都等于同一个常数常数,那么这个数列就叫做那么这个数列就叫做等等比数列,比数列,这个常数叫做这个常数叫做公比公比,记为,记为q(q00).).数学语言:数学语言:*11(2N).nnnnaqnnaaqa且或探究:等比数列的定义探究:等比数列的定义1nnaaq,161,81,41,21(2)2341,20,20,20,20,鬃(3)名名 称称等差数列等差数列等比数列等比数列定定 义义如果一个数列从第如果一个数列从第2 2

    4、项起,每一项与前项起,每一项与前一项的一项的差差都等于都等于同同一个常数一个常数,那么这,那么这个数列叫做等差数个数列叫做等差数列列.这个常数叫做等这个常数叫做等差数列的公差,用差数列的公差,用d d表示表示如果一个数列从如果一个数列从第第 项起,每一项项起,每一项与它与它一项的一项的比比都等于都等于,那么这个数列那么这个数列叫做等比数列叫做等比数列.这个常数叫做等比这个常数叫做等比数列的公比,用数列的公比,用q表示表示.课堂互动(1)1,3,9,27,81,(3)5,5,5,5,5,5,(4)1,-1,1,-1,1,是是,公比公比 q=3是是,公比公比 q=x 是是,公公 比比q=-1(7)

    5、2341,(0)x x x xx(2),161,81,41,21是是,公比公比 q=12观察并判断下列数列是否是等比数列观察并判断下列数列是否是等比数列:是是,公比公比 q=1(5)1,0,1,0,1,(6)0,0,0,0,0,不是等比数列不是等比数列不是等比数列不是等比数列1.1.各项不能为零各项不能为零,即即 0na 2.2.公比不能为零公比不能为零,即即0q4.4.数列数列 a,a,a,a,a,a,0a时时,既是等差数列既是等差数列又是等比数列又是等比数列;0a时时,只是等差数列只是等差数列而不是等比数列而不是等比数列.3.3.当当q0q0,各项与首项,各项与首项同号同号 当当q0q0,

    6、各项符号,各项符号正负相间正负相间对等比数列的理解等比中项 如果在如果在a a与与b b中间插入一个数中间插入一个数G G,使,使a a,G G,b b成等成等比数列,那么比数列,那么G G叫做叫做a a与与b b的的等比中项等比中项。abGabG211,(2).nnnnaaa an2、等比数列中 相邻三项的关系)2(112 naaannn思考思考:1、若、若G2ab,则,则a,G,b一定成等比数列吗?一定成等比数列吗?提示:提示:不一定,若不一定,若aGb0时,不满足时,不满足所以所以a,G,b成等比数列成等比数列G2ab(ab0)等比数列通项公式的推导等比数列通项公式的推导:等比数列通项公

    7、式的推导(归纳法)等比数列通项公式的推导(归纳法)qaa12qqa)(1qaa2321qaqqa)(21qaa3431qa 11nnqaadaa12dnaan)1(1dda)(1daa23da21dda)2(1daa34da31 等差数列通项公式的推导等差数列通项公式的推导(归纳法归纳法)daann1qaann1归纳法证明:证明:21aqa=32aqa=1nnaqa-=将等式左右两边分别相乘可得将等式左右两边分别相乘可得:1 nq化简得:化简得:11 nnqaa即:即:11 nnqaa此式对此式对n=1也成立也成立)(11 Nnqaann1 nqq 12312nnaaaaaa累乘法推导累乘法推

    8、导等比数列通项公式的推导等比数列通项公式的推导:在等比数列在等比数列a an n中,若已知某一项为中,若已知某一项为a amm,公比公比为为q,q,求该数列的任意项求该数列的任意项a an n。等比数列通项公式的等比数列通项公式的推广公式:推广公式:anamqn-m(am0,an 0,m,nZ)+等比数列的通项公式等比数列的通项公式:(nN,q0)11nnaa q例如:数列例如:数列an的首项是的首项是a1=1,公比公比q=2,则通项公式是:则通项公式是:上式还可以写成上式还可以写成nna221可见,这个等比数列可见,这个等比数列的图象都在函数的图象都在函数 的图象上,如右图所示。的图象上,如

    9、右图所示。xy221 0 1 2 3 4 nan87654321 的点函数的图象上一些孤立的图象是其对应的等比数列结论na:思考:思考:等比数列的通项公式与函数有怎样的关系?等比数列的通项公式与函数有怎样的关系?-12nna结论结论:等比数列的图象与指数函数之间的关系等比数列的图象与指数函数之间的关系:11.nnnxaaaqqayqq=等比数列通项公式可整理为:,它的图象是函数的图象上的孤立点巩固知识巩固知识 典型例题典型例题6.3 等比数列31182qq,;412a4112()2nna 12124813111222256aa q 58118 aa,na例例1 在等比数列中,13a 求81,1

    10、85aa解解 由有(2)除以(1)得21q将代人(1),得所以,数列的通项公式为本例题求解过程中,通过两式相除求出公比的方法是研究等比数列问题的常用方法 411aq,(1)7118a q,(2)变形、变形、等比数列等比数列an中中,a1=2,q=-3,求求a8与与an.变形变形2、等比数列等比数列an中中,a1=2,a9=32,求求q.变形、变形、等比数列等比数列an中中,a1+a3=10,a4+a6=5/4,求求q的值的值.变形、变形、等比数列等比数列an中中,a3+a6=36,a4+a7=18,an=1/2,求求n.01222223 3 3.?例:9是等比数列,的第几项13?m是该数列中的

    11、项吗?若是变:,是第几项式0111222113133.nnnaqaaq,1221933525nnn,即2,即9为该数列的第 项.11233n=2m+3nm分 析:令,则解:解:33,nnnnaaa例:已知的通项公式求证:是等比数列.31.:,nnnnana已知数列的前 项和为S求证:数列是式等比数列变定义法,只要看定义法,只要看1(nnaq qna是一个与 无关的非零常数)1111312naS 分析:当时,;111111231(31)333 332 3nnnnnnnnnnnaSS 当时,1112 32 3.nnnnnaa当时,也满足1212 33(2).2 3nnnnana为常数 已知数列已知

    12、数列an满足满足a11,an12an1.(1)求证:数列求证:数列an1是等比数列;是等比数列;(2)求数列求数列an的通项公式的通项公式【思路点拨【思路点拨】将递推公式变形,然后利用等比将递推公式变形,然后利用等比数列的定义判定数列的定义判定(2)由由(1)知,知,an1是以是以a11为首项,为首项,2为公比的等比数列为公比的等比数列所以所以an122n12n,即即an2n1.【名师点评【名师点评】已知数列的递推关系求通项公式已知数列的递推关系求通项公式时,要先判断该数列是否为等差数列或等比数列,时,要先判断该数列是否为等差数列或等比数列,若是等差或等比数列,则按等差或等比数列的通若是等差或

    13、等比数列,则按等差或等比数列的通项公式求解;若不是等差或等比数列,一般先将项公式求解;若不是等差或等比数列,一般先将递推公式变形,构造一个等差或等比数列,从而递推公式变形,构造一个等差或等比数列,从而求出通项公式求出通项公式数数 列列等等 差差 数数 列列等等 比比 数数 列列定定 义义公差(比)公差(比)定义变形定义变形 通项公式通项公式 一般形式一般形式 小结:填写下表小结:填写下表 an+1-an=dqaann1d 叫叫公差公差q叫叫公比公比 an+1=an+d an+1=an q an=a1+(n-1)d an=a1qn-1 an=am+(n-m)d an=amqn-mmnaadmn mnmnaaq 你有什么收获?中项

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:等比数列的概念及通项公式(一)课件.ppt
    链接地址:https://www.163wenku.com/p-4958135.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库