书签 分享 收藏 举报 版权申诉 / 52
上传文档赚钱

类型函数与方程优秀课件1.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4957266
  • 上传时间:2023-01-28
  • 格式:PPT
  • 页数:52
  • 大小:611KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《函数与方程优秀课件1.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    函数 方程 优秀 课件
    资源描述:

    1、要点梳理要点梳理1.1.函数的零点函数的零点(1 1)函数零点的定义)函数零点的定义对于函数对于函数y=f(x)(xD),y=f(x)(xD),把使把使_成立的实数成立的实数x x叫叫做函数做函数y=f(x)(xD)y=f(x)(xD)的零点的零点.2.72.7函数与方程函数与方程f(x)=0f(x)=0基础知识自主学习基础知识自主学习(2 2)几个等价关系)几个等价关系 方程方程f f(x x)=0)=0有实数根有实数根 函数函数y y=f f(x x)的图象与的图象与_有有 交点交点 函数函数y y=f f(x x)有有_._.(3)(3)函数零点的判定(零点存在性定理)函数零点的判定(零

    2、点存在性定理)如果函数如果函数y y=f f(x x)在区间在区间a a,b b上的图象是连续不上的图象是连续不 断的一条曲线,并且有断的一条曲线,并且有_,_,那么函那么函 数数y y=f f(x x)在区间在区间_内有零点内有零点,即存在即存在c c(a a,b b),),使得使得_,这个,这个_也就是也就是f f(x x)=0)=0的根的根.f f(a a)f f(b b)00)0)的图象与零点的关系的图象与零点的关系00=0=000)0)的图象的图象与与x x轴的交点轴的交点 _无交点无交点零点个数零点个数_(x x1 1,0),0),(x x2 2,0),0)(x x1 1,0),0

    3、)无无一个一个两个两个3.3.二分法二分法 (1 1)二分法的定义)二分法的定义 对于在区间对于在区间a a,b b上连续不断且上连续不断且_的的 函数函数y y=f f(x x),通过不断地把函数,通过不断地把函数f f(x x)的零点所在的区的零点所在的区 间间_,_,使区间的两个端点逐步逼近使区间的两个端点逐步逼近_,_,进进 而得到零点近似值的方法叫做二分法而得到零点近似值的方法叫做二分法.(2 2)用二分法求函数)用二分法求函数f f(x x)零点近似值的步骤零点近似值的步骤 第一步,确定区间第一步,确定区间a a,b b,验证,验证_,_,给定精确度给定精确度 ;第二步,求区间(第

    4、二步,求区间(a a,b b)的中点)的中点x x1 1;f f(a a)f f(b b)0)0一分为二一分为二零点零点f f(a a)f f(b b)0)0第三步,计算第三步,计算_:若若_,则,则x x1 1就是函数的零点;就是函数的零点;若若_,则令,则令b b=x x1 1(此时零点此时零点x x0 0(a a,x x1 1););若若_,则令,则令a a=x x1 1(此时零点此时零点x x0 0(x x1 1,b b););第四步,判断是否达到精确度第四步,判断是否达到精确度 :即若:即若|a a-b b|,|,则则得到零点近似值得到零点近似值a a(或(或b b);否则重复第二、

    5、三、四步否则重复第二、三、四步.f f(x x1 1)f f(a a)f f(x x1 1)0)0f f(x x1 1)f f(b b)0)0f f(x x1 1)=0)=0基础自测基础自测1.1.若函数若函数f f(x x)=)=axax+b b有一个零点为有一个零点为2,2,则则g g(x x)=)=bxbx2 2-axax的的 零点是零点是 ()A.0A.0,2 B.02 B.0,C.0C.0,D.2,D.2,解析解析 由由f f(2)=2(2)=2a a+b b=0,=0,得得b b=-2=-2a a,g g(x x)=-2)=-2axax2 2-axax=-=-axax(2(2x x

    6、+1).+1).令令g g(x x)=0)=0,得,得x x=0,=0,x x=g g(x x)的零点为)的零点为0 0,212121,21.21C2.2.函数函数f f(x x)=3)=3axax-2-2a a+1+1在在-1-1,1 1上存在一个零点,上存在一个零点,则则a a的取值范围是的取值范围是 ()A.B.A.B.a a11 C.D.C.D.解析解析 f f(x x)=3)=3axax-2-2a a+1+1在在-1-1,11上存在一个零点,上存在一个零点,则则f f(-1)(-1)f f(1)0,(1)0,即即51a511a151aa或.151aa或D3.3.函数图象与函数图象与x

    7、 x轴均有公共点,但不能用二分法求公轴均有公共点,但不能用二分法求公 共点横坐标的是共点横坐标的是 ()解析解析 图图B B不存在包含公共点的闭区间不存在包含公共点的闭区间a a,b b使函使函 数数f f(a a)f f(b b)0.0.B 4.4.下列函数中在区间下列函数中在区间1,21,2上一定有零点的是(上一定有零点的是()A.A.f f(x x)=3)=3x x2 2-4-4x x+5+5 B.B.f f(x x)=)=x x3 3-5-5x x-5-5 C.C.f f(x x)=)=mxmx2 2-3-3x x+6+6 D.D.f f(x x)=e)=ex x+3+3x x-6-6

    8、 解析解析 对选项对选项D D,f f(1 1)=e-30=e-300,f f(1 1)f f(2 2)0.0.D5.5.设函数设函数 则函数则函数f f(x x)-)-的零点是的零点是_._.解析解析 当当x x11时,时,当当x x11时,时,(舍去大于舍去大于1 1的根的根).).的零点为的零点为 ,)1,(2),1 22)(2xxxxxxf41,04122,041)(xxf即,0412,041)(2xxxf即.89x252x41)(xf.252,89252,89 题型一题型一 零点的判断零点的判断【例例1 1】判断下列函数在给定区间上是否存在零点判断下列函数在给定区间上是否存在零点.(

    9、1)(1)f f(x x)=x x2 2-3-3x x-18-18,x x1 1,8 8;(2)(2)f f(x x)=log=log2 2(x x+2)-+2)-x x,x x1 1,3 3.第(第(1 1)问利用零点的存在性定理或)问利用零点的存在性定理或 直接求出零点,第(直接求出零点,第(2 2)问利用零点的存在性定理)问利用零点的存在性定理 或利用两图象的交点来求解或利用两图象的交点来求解.思维启迪思维启迪题型分类题型分类 深度剖析深度剖析解解 (1 1)方法一方法一f f(1 1)=1=12 2-3-31-18=-2001-18=-2008-18=220,f f(1)(1)f f(

    10、8)0(8)log3-1log2 22-1=0,2-1=0,f f(3)=log(3)=log2 25-3log5-3log2 28-3=0,8-3=0,f f(1 1)f f(3 3)00,故故f f(x x)=log)=log2 2(x x+2)-+2)-x x,x x11,33存在零点存在零点.方法二方法二 设设y y=log=log2 2(x x+2),+2),y y=x x,在同一直角坐标系在同一直角坐标系中画出它们的图象,中画出它们的图象,从图象中可以看出当从图象中可以看出当11x x33时,时,两图象有一个交点,两图象有一个交点,因此因此f f(x x)=log)=log2 2(

    11、x x+2)-+2)-x x,x x11,33存在零点存在零点.函数的零点存在性问题常用的办法函数的零点存在性问题常用的办法有三种有三种:一是用定理,二是解方程一是用定理,二是解方程,三是用图象三是用图象.值得值得说明的是,零点存在性定理是充分条件,而并非是说明的是,零点存在性定理是充分条件,而并非是必要条件必要条件.探究提高探究提高知能迁移知能迁移1 1 判断下列函数在给定区间上是否存判断下列函数在给定区间上是否存 在零点在零点.(1 1)f f(x x)=)=x x3 3+1;+1;(2 2)x x(0 0,1 1).解解 (1 1)f f(x x)=)=x x3 3+1=(+1=(x x

    12、+1)(+1)(x x2 2-x x+1),+1),令令f f(x x)=0)=0,即,即(x x+1)(+1)(x x2 2-x x+1)=0,+1)=0,x x=-1,=-1,f f(x x)=)=x x3 3+1+1有零点有零点-1.-1.(2 2)方法一方法一 令令f f(x x)=0)=0,x x=1,1,而而1 1(0,1),(0,1),x x(0,1)(0,1)不存在零点不存在零点.,1)(xxxf,01,012xxxx得,1)(xxxf方法二方法二 令令 y y=x x,在同一平面直角坐标系中,在同一平面直角坐标系中,作出它们的图象作出它们的图象,从图中可以看出当从图中可以看出

    13、当00 x x11),1),判断判断 f f(x x)=0)=0的根的个数的根的个数.解解 设设f f1 1(x x)=)=a ax x(a a1),1),f f2 2(x x)=)=则则f f(x x)=0)=0的解即为的解即为 f f1 1(x x)=)=f f2 2(x x)的解的解,即为函数即为函数f f1 1(x x)与与f f2 2(x x)图象交点的横坐标图象交点的横坐标.在同一坐标系中,作出函数在同一坐标系中,作出函数 f f1 1(x x)=)=a ax x(a a1)1)与与f f2 2(x x)=)=的图象的图象(如如 图所示)图所示).两函数图象有且只有一个交点,即方程

    14、两函数图象有且只有一个交点,即方程f f(x x)=0)=0有且有且 只有一个根只有一个根.12)(xxaxfx,12xx11312xxx题型三题型三 零点性质的应用零点性质的应用 【例例3 3】(12(12分分)已知函数已知函数f f(x x)=-)=-x x2 2+2e+2ex x+m m-1,-1,g g(x x)=)=x x+(x x0).0).(1)(1)若若g g(x x)=)=m m有零点,求有零点,求m m的取值范围;的取值范围;(2)(2)确定确定m m的取值范围,使得的取值范围,使得g g(x x)-)-f f(x x)=0)=0有两个有两个 相异实根相异实根.(1 1)可

    15、结合图象也可解方程求之)可结合图象也可解方程求之.(2 2)利用图象求解)利用图象求解.思维启迪思维启迪x2e解解 (1 1)方法一方法一 等号成立的条件是等号成立的条件是x x=e.=e.故故g g(x x)的值域是的值域是2e2e,+)+),4 4分分因而只需因而只需m m2e2e,则,则 g g(x x)=)=m m就就有零点有零点.6.6分分方法二方法二 作出作出 的图象如图:的图象如图:4 4分分 可知若使可知若使g g(x x)=)=m m有零点,则只需有零点,则只需m m2e.62e.6分分e,2e2e)(22xxxgxxxg2e)(方法三方法三 解方程由解方程由g g(x x)

    16、=m m,得,得x x2 2-mxmx+e+e2 2=0.=0.此方程有大于零的根,此方程有大于零的根,4 4分分等价于等价于 故故m m2e.62e.6分分(2)(2)若若g g(x x)-)-f f(x x)=0)=0有两个相异的实根,有两个相异的实根,即即g g(x x)=f f(x x)中函数)中函数g g(x x)与)与f f(x x)的图象有两个)的图象有两个不同的交点,不同的交点,0e40222mm故,e2e20mmm或作出作出 (x x00)的图象)的图象.f f(x x)=-=-x x2 2+2e+2ex x+m m-1-1=-(=-(x x-e)-e)2 2+m m-1+e

    17、-1+e2 2.其对称轴为其对称轴为x x=e=e,开口向下,开口向下,最大值为最大值为m m-1+e-1+e2 2.10.10分分故当故当m m-1+e-1+e2 22e,2e,即即m m-e-e2 2+2e+1+2e+1时,时,g g(x x)与与f f(x x)有两个交点,有两个交点,即即g g(x x)-)-f f(x x)=0)=0有两个相异实根有两个相异实根.m m的取值范围是(的取值范围是(-e-e2 2+2e+1,+).12+2e+1,+).12分分xxxg2e)(此类利用零点求参数的范围的问题,可此类利用零点求参数的范围的问题,可 利用方程,但有时不易甚至不可能解出,而转化为

    18、构利用方程,但有时不易甚至不可能解出,而转化为构造两函数图象求解造两函数图象求解,使得问题简单明了使得问题简单明了.这也体现了这也体现了当不是求零点,而是利用零点的个数,或有零点时求当不是求零点,而是利用零点的个数,或有零点时求参数的范围,一般采用数形结合法求解参数的范围,一般采用数形结合法求解.探究提高探究提高知能迁移知能迁移3 3 是否存在这样的实数是否存在这样的实数a a,使函数使函数f f(x x)=)=x x2 2+(3 (3a a-2)-2)x x+a a-1-1在区间在区间-1,3-1,3上与上与x x轴恒有一个零点轴恒有一个零点,且只有一个零点且只有一个零点.若存在若存在,求出

    19、范围求出范围,若不存在若不存在,说说 明理由明理由.解解 =(3=(3a a-2)-2)2 2-4(-4(a a-1)0-1)0 若实数若实数a a满足条件满足条件,则只需则只需f f(-1)(-1)f f(3)0(3)0即可即可.f f(-1)(-1)f f(3)=(1-3(3)=(1-3a a+2+2+a a-1)(9+9-1)(9+9a a-6+-6+a a-1)-1)=4(1-=4(1-a a)(5)(5a a+1)0.+1)0.所以所以a a 或或a a1.1.51 检验检验:(1):(1)当当f f(-1)=0(-1)=0时,时,a a=1.=1.所以所以f f(x x)=)=x

    20、x2 2+x x.令令f f(x x)=0)=0,即,即x x2 2+x x=0=0,得,得x x=0=0或或x x=-1.=-1.方程在方程在-1,3-1,3上有两根,不合题意,故上有两根,不合题意,故a a1.1.(2)(2)当当f f(3)=0(3)=0时,时,a a=解之得解之得x x=或或x x=3.=3.方程在方程在-1,3-1,3上有两根上有两根,不合题意不合题意,故故a a综上所述综上所述,a a 1.1.,51,)(.)(05651305651322 xxxfxxxf即即令令此此时时52 51 51 1.1.函数零点的判定常用的方法有:函数零点的判定常用的方法有:零点存在性定

    21、零点存在性定 理;理;数形结合;数形结合;解方程解方程f f(x x)=0.=0.2.2.研究方程研究方程f f(x x)=)=g g(x x)的解,实质就是研究的解,实质就是研究G G(x x)=)=f f(x x)-g g(x x)的零点)的零点.3.3.二分法是求方程的根的近似值的一种计算方法二分法是求方程的根的近似值的一种计算方法.其其 实质是通过不断地实质是通过不断地“取中点取中点”来逐步缩小零点所在来逐步缩小零点所在 的范围,当达到一定的精确度要求时,所得区间的的范围,当达到一定的精确度要求时,所得区间的 任一点就是这个函数零点的近似值任一点就是这个函数零点的近似值.方法与技巧方法

    22、与技巧思想方法思想方法 感悟提高感悟提高1.1.对于函数对于函数y y=f f(x x)()(x xD D),),我们把使我们把使f f(x x)=0)=0的实数的实数x x叫叫 做函数的零点做函数的零点,注意以下几点注意以下几点:(1)(1)函数的零点是一个实数函数的零点是一个实数,当函数的自变量取这个当函数的自变量取这个 实数时实数时,其函数值等于零其函数值等于零.(2)(2)函数的零点也就是函数函数的零点也就是函数y y=f f(x x)的图象与的图象与x x轴的交点轴的交点 的横坐标的横坐标.(3)(3)一般我们只讨论函数的实数零点一般我们只讨论函数的实数零点.(4)(4)函数的零点不

    23、是点函数的零点不是点,是方程是方程f f(x x)=0)=0的根的根.失误与防范失误与防范2.2.对函数零点存在的判断中对函数零点存在的判断中,必须强调必须强调:(1)(1)f f(x x)在在a a,b b上连续上连续;(2)(2)f f(a a)f f(b b)0;)0=10,f f(-1-1)f f(0 0)00),0),则则y y=f f(x x)()A.A.在区间在区间 (1,e)(1,e)内均有零点内均有零点 B.B.在区间在区间 (1,e)(1,e)内均无零点内均无零点 C.C.在区间在区间 内有零点,在区间内有零点,在区间(1,e)(1,e)内无零点内无零点 D.D.在区间在区

    24、间 内无零点内无零点,在区间在区间(1,e)(1,e)内有零点内有零点 xxxfln31)(),1,e1(),1,e1()1,e1()1,e1(解析解析 因为因为因此因此f f(x x)在在 内无零点内无零点.因此因此f f(x x)在在(1(1,e)e)内有零点内有零点.答案答案 D D )1,e1(,0)1e31(31)1ln31()e1lne131()1()e1(ff.093ee)lne31()1ln131(e)1(ff又3.3.(20092009福建文,福建文,1111)若函数若函数f f(x x)的零点与)的零点与 g g(x x)=4)=4x x+2+2x x-2-2的零点之差的绝

    25、对值不超过的零点之差的绝对值不超过0.250.25,则,则 f f(x x)可以是可以是 ()A.A.f f(x x)=4)=4x x-1 B.-1 B.f f(x x)=()=(x x-1)-1)2 2 C.C.f f(x x)=e)=ex x-1 D.-1 D.解析解析 g g(x x)=4)=4x x+2+2x x-2-2在在R R上连续且上连续且 设设g g(x x)=4)=4x x+2+2x x-2-2的零点为的零点为x x0 0,则则 )21ln()(xxf.01212)21(,02322212)41(gg,21410 x又又f f(x x)=4)=4x x-1-1零点为零点为 f

    26、 f(x x)=()=(x x-1)-1)2 2零点为零点为x x=1;=1;f f(x x)=e)=ex x-1-1零点为零点为x x=0;=0;零点为零点为答案答案 A A .41|41|,4141000 xx;41x)21ln()(xxf.23x 4.4.方程方程|x x2 2-2-2x x|=|=a a2 2+1(+1(a aR R+)的解的个数是的解的个数是 ()A.1 B.2 C.3 D.4A.1 B.2 C.3 D.4 解析解析 a aR R+,a a2 2+11.+11.而而y y=|=|x x2 2-2-2x x|的图象如图,的图象如图,y y=|=|x x2 2-2-2x

    27、x|的图象与的图象与y y=a a2 2+1+1 的图象总有两个交点的图象总有两个交点.方程有两解方程有两解.B5.5.方程方程|x x|(|(x x-1)-1)-k k=0=0有三个不相等的实根,则有三个不相等的实根,则k k的取的取 值范围是值范围是 ()A.B.A.B.C.D.C.D.解析解析 本题研究方程根的个数问题本题研究方程根的个数问题,此类问题首选此类问题首选 的方法是图象法即构造函数利用函数图象解题的方法是图象法即构造函数利用函数图象解题,其其 次是直接求出所有的根次是直接求出所有的根.本题显然考虑第一种方法本题显然考虑第一种方法.)0,41()41,0(),41()41,(如

    28、图,作出函数如图,作出函数y y=|=|x x|(|(x x-1)-1)的的图象,由图象知当图象,由图象知当k k 时,时,函数函数y y=k k与与y y=|=|x x|(|(x x-1)-1)有有3 3个不同的个不同的交点,即方程有交点,即方程有3 3个实根个实根.答案答案 A A)0,41(6.6.设设f f(x x)=)=x x3 3+bxbx+c c(b b0)(-10)(-1x x1),1),且且 则方程则方程f f(x x)=0)=0在在-1,1-1,1内内()()A.A.可能有可能有3 3个实数根个实数根 B.B.可能有可能有2 2个实数根个实数根 C.C.有唯一的实数根有唯一

    29、的实数根 D.D.没有实数根没有实数根 解析解析 f f(x x)=x x3 3+bxbx+c c (b b00),),f f(x x)=3)=3x x2 2+b b0,0,f f(x x)在)在-1,1-1,1上为增函数上为增函数,又又 f f(x x)在)在 内存在唯一零点内存在唯一零点.,0)21()21(ff,0)21()21(ff)21,21(C二、填空题二、填空题7.7.若函数若函数f f(x x)=)=x x2 2-axax-b b的两个零点是的两个零点是2 2和和3 3,则函数,则函数 g g(x x)=)=bxbx2 2-axax-1-1的零点是的零点是_._.解析解析 g

    30、g(x x)=-6=-6x x2 2-5-5x x-1-1的零点为的零点为 .65,033,02222bababa得由.31,2131,218.8.若函数若函数f f(x x)=)=x x2 2+axax+b b的两个零点是的两个零点是-2-2和和3,3,则不等式则不等式 afaf(-2(-2x x)0)0的解集是的解集是_._.解析解析 f f(x x)=x x2 2+axax+b b的两个零点是的两个零点是-2-2,3.3.-2 -2,3 3是方程是方程x x2 2+axax+b b=0=0的两根,的两根,由根与系数的关系知由根与系数的关系知 f f(x x)=)=x x2 2-x x-6

    31、.-6.不等式不等式afaf(-2(-2x x)0)0,即即-(4-(4x x2 2+2+2x x-6)0-6)0 2 2x x2 2+x x-30,-30,解集为解集为,61,3232baba.123|xx.123|xx9.9.已知已知y y=x x(x x-1)(-1)(x x+1)+1)的图象如图所示的图象如图所示,今考虑今考虑f f(x x)=)=x x(x x-1)(-1)(x x+1)+0.01,+1)+0.01,则方程则方程f f(x x)=0)=0 有三个实根;有三个实根;当当x x-1-1时时,恰有一实根恰有一实根(有一有一 实根且仅有一实根实根且仅有一实根););当当-1-

    32、1x x00时,恰有一实根;时,恰有一实根;当当00 x x111时,恰有一实根时,恰有一实根.则正确结论的编号为则正确结论的编号为_._.解析解析 f f(-2-2)=-2=-2(-3)(-3)(-1)+0.01=-5.990,(-1)+0.01=-5.990=0.010,即,即f f(-2)(-2)f f(-1)0(-1)0,(0)=0.010,由图知由图知f f(x x)=0)=0在在(-1,0)(-1,0)上没有实数上没有实数根根,所以所以不正确不正确.又又f f(0.5)=0.5(0.5)=0.5(-0.5)(-0.5)1.5+0.01=-0.3650,1.5+0.01=-0.365

    33、0,(1)=0.010,即即f f(0.5)(0.5)f f(1)0,(1)0,所以所以f f(x x)=0.)=0.在在(0.5,1)(0.5,1)上必有一个实根上必有一个实根,且且f f(0)(0)f f(0.50.5)0,00且且f f(x x)在(在(1 1,+)上是增函数,)上是增函数,f f(x x)0,0,f f(x x)=0)=0在(在(1 1,+)上没有实根)上没有实根.不正确不正确.并且由此可知并且由此可知也正确也正确.答案答案 三、解答题三、解答题10.10.已知函数已知函数f f(x x)=4)=4x x+m m22x x+1+1有且仅有一个零点,求有且仅有一个零点,求

    34、 m m的取值范围,并求出该零点的取值范围,并求出该零点.解解 f f(x x)=4=4x x+m m22x x+1+1有且仅有一个零点,有且仅有一个零点,即方程即方程(2(2x x)2 2+m m22x x+1=0+1=0仅有一个实根仅有一个实根.设设2 2x x=t t(t t0)0),则,则t t2 2+mtmt+1=0.+1=0.当当=0,=0,即即m m2 2-4=0-4=0,m m=-2=-2时,时,t t=1;=1;m m=2=2时,时,t t=-1=-1不合题意,舍去,不合题意,舍去,22x x=1=1,x x=0=0符合题意符合题意.当当00,即,即m m22或或m m-20

    35、,=10,则应有则应有f f(2)0,(2)0,又又f f(2 2)=2=22 2+(m m-1-1)2+1,2+1,m m .23若若f f(x x)=0)=0在区间在区间0,20,2上有两解上有两解,则则由由可知可知m m-1.-1.,123,231313.012)1(41304)1(,0)2(221002mmmmmmmmfm或12.12.已知已知a a是实数,函数是实数,函数f f(x x)=2)=2axax2 2+2+2x x-3-3-a a.如果函数如果函数 y y=f f(x x)在区间在区间-1-1,1 1上有零点上有零点,求求a a的取值范围的取值范围.解解 (1 1)当)当a

    36、 a=0=0时,时,f f(x x)=2)=2x x-3.-3.令令2 2x x-3=0,-3=0,得得x x=-1-1,1 1 f f(x x)在)在-1-1,1 1上无零点,故上无零点,故a a0.0.(2 2)当)当a a00时,时,f f(x x)=2)=2axax2 2+2+2x x-3-3-a a的对称轴为的对称轴为 23.21ax 当当 -1,-1,即即00a a 时,时,须使须使a a的解集为的解集为 .当当-1 0,-1 时,时,须使须使解得解得a a1,1,a a的取值范围是的取值范围是1 1,+).+).a2121a2121.150)1(0)1(aaff即即.103210

    37、)1(0)21(aaafaf即即(3 3)当)当a a00时,时,当当0 1,01,1,即即 a a00时,时,须有须有a a的解集为的解集为 .综上所述,综上所述,a a的取值范围是的取值范围是a212115,0)1(0)1(aaff即).,1 273,(85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。约翰B塔布 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。戴尔卡内基 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上

    38、百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。贾柯瑞斯 88.每个意念都是一场祈祷。詹姆士雷德非 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。柏格森 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。托尔斯泰 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。兰斯顿休斯 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。玛科斯奥雷利阿斯 93.在安详静谧的大自

    39、然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。约翰纳森爱德瓦兹 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。约翰拉斯金 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。威廉班 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。萧伯纳 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。JE丁格 98.过去的事已经一去不复

    40、返。聪明的人是考虑现在和未来,根本无暇去想过去的事。英国哲学家培根 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。马塞尔普劳斯特 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。罗丹 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。托尔斯泰 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候。叔本华 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,

    41、让他随他所听到的旋律走,无论快慢或远近。梭罗 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。威廉彭 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。戴尔卡内基 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。约翰罗伯克 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。撒母耳厄尔曼 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但

    42、自认为最明智的人一般而言却是最愚蠢的。卡雷贝C科尔顿 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。戴尔卡内基 110.每天安静地坐十五分钟倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。艾瑞克佛洛姆 111.你知道何谓沮丧-就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。坎伯 112.伟大这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。布鲁克斯 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。罗根皮沙尔史密斯 114

    43、.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。阿萨赫尔帕斯爵士 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。威廉海兹利特 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。凯里昂 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。BC福比斯 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。迈可汉默 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而

    44、折回,停滞后又前进,有失有得,有付出也有收获。奥古斯汀 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。史迈尔斯 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。CHK寇蒂斯 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。乔治桑 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。约翰夏尔 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。道格拉斯米尔多 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度。老子 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。怀特曼 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。G.K.Chesteron 128.医生知道的事如此的少,他们的收费却是如此的高。马克吐温 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。约翰鲁斯金

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:函数与方程优秀课件1.ppt
    链接地址:https://www.163wenku.com/p-4957266.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库