书签 分享 收藏 举报 版权申诉 / 49
上传文档赚钱

类型课件人教版《实数》课件2.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4954376
  • 上传时间:2023-01-28
  • 格式:PPT
  • 页数:49
  • 大小:1.31MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《课件人教版《实数》课件2.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    实数 课件 人教版
    资源描述:

    1、 实 数第六章 实 数导入新课讲授新课当堂练习课堂小结第1课时 实 数1.了解实数的意义,并能将实数按要求进行准确的分类;2.熟练掌握实数大小的比较方法;(重点)3.了解实数和数轴上的点一一对应,.难点)学习目标导入新课导入新课数学危机思考:属于哪一类数呢?2问题1 我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,它们有什么特征?119,911,427,53,25,5.225,6.053,75.6427,2.1911.18.0119它们都可以化成有限小数或无限循环小数的形式讲授新课讲授新课实数的概念和分类一问题2 整数能写成小数的形式吗?3可以看成是吗?可以可以思考 由此你可

    2、以得到什么结论?有理数都可以化成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.叫做无理数.想一想:所有的数都可以写成有限小数和无限循环小数的形式吗?1.01001000100001(两个1之间依次多一个0)无限不循环小数不是.如:1.57079632679.2思考:是无理数吗?2.020 020 002 000 02是无 理数吗?2常见的一些无理数:(1)含 的一些数;(2)含开不尽方的数;(3)有规律但不循环的小数,如1.01001000100001它们都是无限不循环小数,是无理数把下列各数分别填入相应的集合内:2 2,72,54,0.3737737773,2

    3、.1 21,364,有理数集合 无理数集合,3练一练思考:我们将有理数和无理数统称为实数,仿照有 理数的分类吗?据此你能给实数分类吗?无理数:无限不循环小数有理数:有限小数或无限循环小数实 数(1)按定义分分数整数含开方开不尽的数有规律但不循环的小数含有 的数 9、最简二次根式:运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。1.两条直线平行的性质公理:两直线平行,同位角相等;x+a或y+a 沿x轴或y轴平移a个单位同底数幂的乘法法则:(m,n都是正数)

    4、是幂的运算中最基本的法则,在应用法则运算时,要6、坐标轴上的点的特征根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。零的平方根是零;(2)点M为“等轴距点”,B,M两点的“轴距长方形”为周长等于8的正方形,求M点的坐标;当a0,b0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;(3)由(2)知一次函数解析式为:y=2x-3,负实数 正实数数实正有理数负有理数(2)按性质分0 正无理数 负无理数,93,7,16,5,83,94,0,

    5、25无理数:39,7,5,0.3232232223有理数:负实数:正实数:0.3232232223例1 将下列各数分别填入下列相应的括号内:14,14,16,38,4,90,2516,38,539,14,7,25,0.32322322234,9典例精析 对每个数都要进行判断,分类标准不同结果不同.方法试一试324172523205389407773773373.0,.,41,25,83,94,23,7,2,32057773773373.0正数负数思考1:如图,直径为个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达A点,则数轴上表示点A的数是多少?因为圆的周长为,所以数轴上点A表示的数

    6、是无理数.0-2-11324A实数与数轴上的点二222思考2:你能在数轴上表示出 和-吗?221111 把两个边长为1的小正方形通过剪、拼,得到一个大正方形,大正方形的边长为 ,从而说明边长为1的小正方形的对角线为 .2221012222-每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一点都表示一个实数.实数和数轴上的点是一一对应的.例2:如图所示,数轴上A,B两点表示的数分别为1和 ,点B关于点A的对称点为C,求点C所表示的实数解:数轴上A,B两点表示的数分别为1和 ,点B到点A的距离为1 ,则点C到点A的距离为1 ,设点C表示的实数为x,则点A到点C的距离为1x,1x1 ,x2

    7、 3 3 3 3 3 3 方法总结 本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C为点B关于点A的对称点时,点C到点A的距离等于点B到点A的距离;两点之间的距离为两数差的绝对值例3:如图所示,数轴上A,B两点表示的数分别为 和5.1,则A,B两点之间表示整数的点共有()A6个 B5个 C4个 D3个 2 解析:1.414,和5.1之间的整数有2,3,4,5,A,B两点之间表示整数的点共有4个 2 2 C【方法总结】数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论 与有理数一样,实数也可以比较大小:实数的大小比较三 与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示

    8、的实数大.原点0正实数负实数0时,图像经过第一、三象限,y随x的增大而增大;【分析】随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数3在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。(2)如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切。此时这条直线叫做圆的切线,这个公共点叫做切点考察结合图像对简单实际问题中的函数关系进行分析。单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;解得:x2且x0,二次根式、勾股定理、四边形、一次函数和数据的分析。7、实数大小的比较公式左边是二

    9、项式的完全平方;,2可以分别看作是面积为5,4的正方形的边长,容易说明:面积较大的正方形,它的边长也较大,因此55 2.同样,因为59,所以5 3.不用计算器,与2比较哪个大?与3比较呢?5议一议典例精析例4 在数轴上表示下列各点,比较它们的大小,并用“”连接它们.23-2 -1 0 1 2 351-2-2 1 325例5 估计 位于()15 A.01之间 B.12之间 C.23之间 D.34之间B 熟记一些常见数的算术平方根;或用计算器估计.归纳 例6 比较下列各组数的大小:(1)12110.与 3;(2)与 3解:(1)因为 12 42,所以 4,所以 1 32,所以 所以 103,103

    10、.为什么?为什么?1.下列说法正确的是()A.a一定是正实数 B.是有理数C.是有理数 D.数轴上任一点都对应一个有理数22172 2B当堂练习当堂练习2.有一个数值转换器,原理如下,当输x=81时,输出 的y是()输入x取算术平方根是无理数输出y是有理数A.9 B.3 C.D.3 3C3.判断快枪手看谁最快最准!(1)实数不是有理数就是无理数.()(2)无理数都是无限不循环小数.()(4)无理数都是无限小数.()(3)带根号的数都是无理数.()(5)无理数一定都带根号.()4.把下列各数填入相应的括号内:9 3564 6.043 39 313.0(1)有理数:(2)无理数:(3)整数:(4)

    11、负数:(5)分数:(6)实数:353943 39 9 6439-64 6.043313.0 6.043 13.0 5.比较 与6的大小.37解:37 36 6.37实数无理数的概念实数的概念实数的分类实数的数轴表示课堂小结课堂小结实数的大小比较6.3 6.3 实数实数第第2 2课时课时(1)将立体图形展成平面图形为正整数)。若直线l与 O相离;此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定(x一个值,取正)(x两个值,

    12、一正一负)(x一个值,可正可负)其中正确的说法共有()5.画一次函数图像的最简单方法:1=60,1=60”考察主要内容:点P(x,y)在第一、三象限夹角平分线上x与y相等(直线y=x)1.理解实数的相反数、绝对值的意义,会求一个实数理解实数的相反数、绝对值的意义,会求一个实数的相反数和绝对值的相反数和绝对值.2.会比较实数的大小会比较实数的大小.3.知道有理数的运算法则和运算性质等在实数范围内知道有理数的运算法则和运算性质等在实数范围内仍成立,会进行简单的实数运算仍成立,会进行简单的实数运算.把有理数扩充到实数之后,有理数关于相反把有理数扩充到实数之后,有理数关于相反数和绝对值的意义,大小比较

    13、以及运算法则和运数和绝对值的意义,大小比较以及运算法则和运算律等同样适合于实数,这节课我们就来学习这算律等同样适合于实数,这节课我们就来学习这些内容些内容.知识点1有理数关于相反数和绝对值的意义同样适用于实数有理数关于相反数和绝对值的意义同样适用于实数.(1)的相反数是的相反数是_,-的相反的相反数是数是_,0的相反数是的相反数是_;2 20(2)|=_,|-|=_,|0|=_.220数数 a 的相反数是的相反数是 a,任意一个实数任意一个实数 一个正实数的绝对值是它本身;一个负实数一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;的绝对值是它的相反数;0的绝对值是的绝对值是0|a|

    14、=a,当,当a 0时;时;a,当,当a 0时时.0,当,当a=0时;时;例例1 (1)分别写出)分别写出 ,3.14的相反数;的相反数;6解:解:(1)因为)因为6=6-()(3.14)=3.14 所以,所以,3.14的相反数为的相反数为 ,3.14 6 6(2)指出)指出 ,分别是什么数的相反数;分别是什么数的相反数;313 5(2)因为)因为5=5-(-()-3331=13-(-()所以,所以,分别是分别是 ,的相反数的相反数.5 3135 331(3)求)求 的绝对值;的绝对值;364(3)因为)因为=3364644所以所以=36444(4)已知一个数的绝对值是)已知一个数的绝对值是 ,

    15、求这个数,求这个数.3(4)因为)因为=33,=33,所以绝对值是所以绝对值是 的数是的数是 或或 .33 31.求下列各数的相反数与绝对值求下列各数的相反数与绝对值.7 2 320相相反反数数绝绝对对值值772 2 23 23002.求下列各式中的实数求下列各式中的实数x.(1)|x|=23(2)|x|=0(3)|x|=10(4)|x|=x 23x 0 x 10 x 知识点2 实数之间不仅可以进行加减实数之间不仅可以进行加减乘除(除数不为乘除(除数不为0)、乘方运算,)、乘方运算,而且正数及而且正数及0可以进行开平方运可以进行开平方运算,任意一个实数可以进行开立算,任意一个实数可以进行开立方

    16、运算方运算.在进行实数的运算时,在进行实数的运算时,有理数的运算性质等同样适用有理数的运算性质等同样适用.例例2 计算下列各式的值计算下列各式的值.(1)(32)2(2)3 32 3=322 ()=30=3解:解:=(3+2)3=5 3 在实数运算中,当遇到无理数并且要求求出在实数运算中,当遇到无理数并且要求求出结果的近似值时,可以按照所要求的精确度用相结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算应的近似有限小数去代替无理数,再进行计算.例例3 计算(结果保留小数点后两位)计算(结果保留小数点后两位)(1)5 (2)32解:解:(1)2.236+3.142

    17、 5.385 (2)1.7321.414 2.4532 1.计算计算.(1)232 22 23 2(2)2 322 2321.填表填表.实数实数相反数相反数绝对值绝对值38 1723 23 1.42 31.7 2217 17232323 23 21.4 21.4 31.7 1.73 2.计算计算(1)3 22 2(1)3333 解:解:5 2 3333 =0 3.若若a2=25,|b|=3,则则a+b的所有可能的所有可能值为(值为()D或或或或-2D.8或或24.计算计算.2311()83224 1122342 134 5.要生产一种容积为要生产一种容积为36L的球形容器,这的球形容器,这种球形容器的半径是多少分米?(球的体积公种球形容器的半径是多少分米?(球的体积公式是式是V=R3,其中,其中R是球的半径)是球的半径)43解:由解:由V=R3得得,36=R3,R3=27,R=3(dm).答:这种球形容器的半径是答:这种球形容器的半径是3dm.4343 在进行实数运算时,有理数的运算法则及在进行实数运算时,有理数的运算法则及运算性质等同样运用运算性质等同样运用.近似计算时,计算过程中所取的近似值要近似计算时,计算过程中所取的近似值要比题目要求的精确度多取一位小数比题目要求的精确度多取一位小数.0102小小结结

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:课件人教版《实数》课件2.ppt
    链接地址:https://www.163wenku.com/p-4954376.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库