书签 分享 收藏 举报 版权申诉 / 31
上传文档赚钱

类型圆锥曲线课件整理.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4945538
  • 上传时间:2023-01-27
  • 格式:PPT
  • 页数:31
  • 大小:1.37MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《圆锥曲线课件整理.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    圆锥曲线 课件 整理
    资源描述:

    1、 1)1)掌握椭圆的定义,标准方程和椭圆的掌握椭圆的定义,标准方程和椭圆的几何性质几何性质 2)2)掌握双曲线的定义,标准方程和双曲掌握双曲线的定义,标准方程和双曲线的几何性质线的几何性质 3)3)掌握抛物线的定义,标准方程和抛物掌握抛物线的定义,标准方程和抛物线的几何性质线的几何性质 4)4)能够根据条件利用工具画圆锥曲线的能够根据条件利用工具画圆锥曲线的图形,并了解圆锥曲线的初步应用。图形,并了解圆锥曲线的初步应用。椭圆椭圆双曲线双曲线抛物线抛物线标准方程标准方程几何性质几何性质标准方程标准方程几何性质几何性质标准方程标准方程几何性质几何性质第二定义第二定义第二定义第二定义统一定义统一定义

    2、综合应用综合应用与两个定点与两个定点的距离的和等的距离的和等于常数于常数 与两个定点的与两个定点的距离的差的绝对距离的差的绝对值等于常数值等于常数)0(12222babyax)0,0(12222babyax)0(22ppxyX X轴,长轴长轴,长轴长2a,2a,Y Y轴,短轴长轴,短轴长2b2bX X轴,实轴长轴,实轴长2a,2a,Y Y轴,虚轴长轴,虚轴长2b2bX X轴轴 (c,0)c,0)c c2 2=a=a2 2-b-b2 2 (c,0)c,0)c c2 2=a=a2 2+b+b2 2 (p/2,0)p/2,0)0e10e1 e1 e=1 e=1 x=x=a a2 2/c/c x=x=

    3、a a2 2/c/c x=-p/2 x=-p/2椭圆、双曲线、抛物线的标准方程和图形性质椭圆、双曲线、抛物线的标准方程和图形性质1、已知点、已知点P 是椭圆是椭圆 一点一点 ,F1和和F2 是椭圆的焦点,是椭圆的焦点,192522yxPF1F2d若若F1PF2=90,求,求 F1PF2的面积的面积若若F1PF2=60,求,求 F1PF2的面积的面积若若F1PF2=,求,求 F1PF2的面积的面积PF1F2d解解 由椭圆定义得由椭圆定义得:|PF1|+|PF2|=10又又a=5 b=3,c=4,2c=8由勾股定理得由勾股定理得:|PF1|2+|PF2|2=642-得 2|PF1|PF2|=369

    4、|212121PFPFSPFF故由余弦定理得由余弦定理得:|PF1|2+|PF2|2-2|PF1|PF2|cos60=643360sin|212121PFPFSPFF故 由余弦定理得由余弦定理得:|PF1|2+|PF2|2-2|PF1|PF2|cos=642tan9cos1sin9sin|212121PFPFSPFF故2-得 3|PF1|PF2|=362-得 2(1+cos)|PF1|PF2|=36PF1F2dA1A22、已知点、已知点P 是椭圆是椭圆 上一点上一点 ,F1和和F2 是椭圆的左是椭圆的左右焦点右焦点,求求:1162522yx的最大值21)2(PFPF 的最大值与最小值1)1(P

    5、F(1)解法一解法一:(代入法代入法)设P(x,y),易知:c=3,得F1(-3,0),由两点间距离公式得:22222221)553(256259)25(251696)3(|xxxxxxyxPF2|,8|55min1max1PFPFxPF1F2dA1A22、已知点、已知点P 是椭圆是椭圆 上一点上一点 ,F1和和F2 是椭圆的左是椭圆的左右焦点右焦点,求求:1162522yx的最大值21)2(PFPF 的最大值与最小值1)1(PF(1)解法二解法二:(参数法参数法)设P(5cos,4sin),222221)5cos3(25cos30cos9)sin4()3cos5(|PF2|,8|1cos1m

    6、in1max1PFPF易知:c=3,得F1(-3,0),由两点间距离公式得:lPF1F2dA1A22、已知点、已知点P 是椭圆是椭圆 上一点上一点 ,F1和和F2 是椭圆的左是椭圆的左右焦点右焦点,求求:1162522yx的最大值21)2(PFPF 的最大值与最小值1)1(PF(1)解法三解法三:(几何法几何法)设设l是已知椭圆与焦点是已知椭圆与焦点F1相相应的准线应的准线,PNl,垂足为垂足为N,由椭圆第二定义得由椭圆第二定义得:2|,5,8|,511min112max1FAPFxFAPFxpp时时N)325(53|53|,53|11pxPNPFPNPF即55px2、已知点、已知点P 是椭圆

    7、是椭圆 上一点上一点 ,F1和和F2 是椭圆的左是椭圆的左右焦点右焦点,求求:1162522yx的最大值21)2(PFPF 的最大值与最小值1)1(PF解解 (2)由椭圆定义得由椭圆定义得:|PF1|+|PF2|=1025)2|(22121PFPFPFPF25max21PFPFPF1F23.3.已知抛物线已知抛物线y=xy=x2 2,动弦动弦ABAB的长为的长为2 2,求,求ABAB中点纵坐标中点纵坐标的最小值的最小值。解:),(),(),(2211yxMAByxByxA中中点点设设,2BCADMN,412yypMNBFBCAFAD,)41(2yBFAF.xoyFABMCND2,ABBFAFA

    8、BF中43,2)41(2yy即即)41(2yBCAD11953,548)516(2516yxxx 3.动点动点P 到直线到直线 x+4=0 的距离减去它到点的距离减去它到点M(2,0)的距)的距离之差等于离之差等于2,则点,则点P 的轨迹是的轨迹是 ()A直线直线 B.椭圆椭圆 C.双曲线双曲线 D.抛物线抛物线D1.过点(0,2)与抛物线 只有一个公共点的直线有()(A)1条 (B)2条 (C)3条 (D)无数多条 xy82C C.P2、双曲线、双曲线14922yx 与直线与直线 y=kx-1只有一个公共点,求只有一个公共点,求k的值的值说明:(1)从图形分析,应有四个解 (2)利用方程求解

    9、时利用方程求解时,应注意应注意对对K的讨论的讨论xyO 例例.直线直线y=x-2与抛物线与抛物线y2=2x相交于相交于A、B 求证:求证:OAOB(课本(课本P130例例2)。)。证法证法1:将y=x-2代入y2=2x中,得(x-2)2=2x化简得 x2-6x+4=0解得:53x则:51y,5351,5351OAOBkk1595153515351OAOBkkOAOBxyABO证法证法2:同证法1得方程 x2-6x+4=0由一元二次方程根与系数的关系,可知 x1+x2=6,x1x2=4 OAOBy1=x1-2,y2=x2-2;y1y2=(x1-2)(x2-2)=x1x2-2(x1+x2)+4 =

    10、4-12+4=-414421212211xxyyxyxykkOBOAxyABO 例例1.直线直线y=x-2与抛物线与抛物线y2=2x相交于相交于A、B 求证:求证:OAOB(课本(课本P130例例2)。)。1.直线直线y=x-2与抛物线与抛物线y2=2x相交于相交于A、B 求弦长求弦长|AB|。2.直线直线y=x+b与抛物线与抛物线y2=2x相交于相交于A、B ,且弦长且弦长|AB|=2 ,求该直线的方程求该直线的方程.103.直线直线l与抛物线与抛物线y2=2x相交于相交于A、B ,且且AB中点的坐标为中点的坐标为(3,1),求该直线的方程求该直线的方程.4.过抛物线过抛物线y2=4x的焦点

    11、作直线的焦点作直线,交此抛物线于交此抛物线于A、B两点两点,求求AB中点的轨迹方程中点的轨迹方程.基训基训 P48 三、2基训基训 P45 三、2基训基训 P46 三、2基训基训 P52 三、2 1.动点动点P 到直线到直线 x+4=0 的距离减去它到点的距离减去它到点M(2,0)的距)的距离之差等于离之差等于2,则点,则点P 的轨迹是的轨迹是 ()A直线直线 B.椭圆椭圆 C.双曲线双曲线 D.抛物线抛物线D2.P是双曲线是双曲线 上任意一点,上任意一点,O为原点,则为原点,则OP线段中点线段中点Q的轨迹方程是(的轨迹方程是()14.22yxA14.22 yxB14.22xyC14.22 x

    12、yD3和圆和圆x2+y2=1外切,且和外切,且和x轴相切的动圆圆心轴相切的动圆圆心O的轨迹的轨迹方程是方程是 。x2=2|y|+1B14.22xyC 例(课本例(课本P P129129例例1 1)一圆与圆)一圆与圆x x2 2+y+y2 2+6x+5=0+6x+5=0外切,同时与圆外切,同时与圆x x2 2+y+y2 2-6x-91=06x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么曲线。内切,求动圆圆心的轨迹方程,并说明它是什么曲线。O O1 1PXYO O2 2 例(课本例(课本P P129129例例1 1)一圆与圆)一圆与圆x x2 2+y+y2 2+6x+5=0+6x+5=0外

    13、切,同时与圆外切,同时与圆x x2 2+y+y2 2-6x-91=06x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么曲线。内切,求动圆圆心的轨迹方程,并说明它是什么曲线。解法解法1:如图:设动圆圆心为如图:设动圆圆心为P(x,y),半径为半径为R,两已知圆圆心为,两已知圆圆心为O1、O2。分别将两已知圆的方程分别将两已知圆的方程 x2+y2+6x+5=0 x2+y2-6x-91=0配方,得配方,得(x+3)2+y2=4 (x-3)2+y2=100当当PP与与OO1 1:(x+3):(x+3)2 2+y+y2 2=4=4外切时,有外切时,有|O|O1 1P|=R+2 P|=R+2 当当P

    14、P与与OO2 2:(x-3):(x-3)2 2+y+y2 2=100=100内切时,有内切时,有|O|O2 2P|=10-RP|=10-R、式两边分别相加,得|O1P|+|O2P|=12即12)3()3(2222yxyxO1PXYO212736:22yx化简整理得所以,动圆圆心的轨迹是椭圆,它的长轴、短轴分别为.3612、例(课本例(课本P P129129例例1 1)一圆与圆)一圆与圆x x2 2+y+y2 2+6x+5=0+6x+5=0外切,同时与圆外切,同时与圆x x2 2+y+y2 2-6x-91=06x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么曲线。内切,求动圆圆心的轨迹方程

    15、,并说明它是什么曲线。O O1 1PXYO O2 2解法解法2:同解法同解法1得方程得方程12)3()3(2222yxyx即,动圆圆心即,动圆圆心P(x,y)P(x,y)到点到点O O1 1(-3-3,0 0)和点)和点O O2 2(3,0)(3,0)距离的和是距离的和是1212,所以点所以点P P的轨迹是焦点为(的轨迹是焦点为(-3-3,0 0)、()、(3 3,0 0),长轴长等于),长轴长等于1212的椭圆。的椭圆。2c=6,2a=12,c=3 ,a=6 b2=36-9=27于是得动圆圆心的轨迹方程为于是得动圆圆心的轨迹方程为1273622yx这个动圆圆心的轨迹是椭圆,它的长轴、短轴分别为这个动圆圆心的轨迹是椭圆,它的长轴、短轴分别为.3612、例(课本例(课本P P129129例例1 1)一圆与圆)一圆与圆x x2 2+y+y2 2+6x+5=0+6x+5=0外切,同时与圆外切,同时与圆x x2 2+y+y2 2-6x-91=06x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么曲线。内切,求动圆圆心的轨迹方程,并说明它是什么曲线。布置作业:布置作业:复习参考题:A组12题、13题精品课件精品课件!精品课件精品课件!2023年年1月月27日星期五日星期五

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:圆锥曲线课件整理.ppt
    链接地址:https://www.163wenku.com/p-4945538.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库