高等数学英文版课件-15-Differential-equations.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学英文版课件-15-Differential-equations.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 英文 课件 15 Differential equations
- 资源描述:
-
1、Differential equations机动 目录 上页 下页 返回 结束 15.2 First-order linear equations15.3 Exact equations 15.4 Strategy for solving first-order equationsChapter 1515.1 Basic concepts,separable and homogeneous equationsA second-order linear differential equation has the form(1)where P,Q,R,and G are continuous fu
2、nctions.)()()()(22xGyxRdxdyxQdxydxP15.5 Second-Order Linear Equations If G(x)=0 for all x,such equations are called second-order homogeneous linear equations.(This use of the word homogeneous has nothing to do with the meaning given in Section 15.1.)(2)0)()()(22yxRdxdyxQdxydxPIf for some x,Equation
3、1 is nonhomogeneous.0)(xG Two basic facts enable us to solve homogeneous linear equations.The first of these says that if we know two solutions and of such an equation,then the linear combination is also a solution.1y2y2211ycycy(3)Theorem If and are both solutions of the linear equation(2)and and ar
4、e any constants,then the function is also a solution of Equation 2.)(1xy)(2xy1c2c)()()(2211xycxycxyProof Since and are solutions of Equation 2,we have and 1y2y0)()()(111 yxRyxQyxP0)()()(222 yxRyxQyxPThereforeThus is a solution of Equation 2.2211ycycy000)()()()()()()()()()()()()()()(21222211112211221
5、12211221122112211 ccyxRyxQyxPcyxRyxQyxPcycycxRycycxQycycxPycycxRycycxQycycxPyxRyxQyxP Let x and y are two variables,if neither x nor y is a constant multiple of the other,we say x and y are two linearly independent variables.For instance,the function and are linearly dependent,but and are linearly i
6、ndependent.2)(xxf25)(xxgxexf)(xxexg)(The second theorem says that the general solution of a homogeneous linear equation is a linear combination of two linearly independent solutions.(4)Theorem If and are linearly independent solutions of Equation 2,then the general solution is given by where and are
7、 arbitrary constants.1y2y)()()(2211xycxycxy1c2c In general,it is not easy to discover particular solutions to a second-order linear equation.But it is always possible to do so if the coefficient functions P,Q and R are constant functions,that is,if the differential equation has the form(5)0 cyybya I
8、t is not hard to think of some likely candidates for particular solutions of Equation 5.For example,the exponential function y because its derivatives are constants multiple of itself:.Substitute these expression into Equation 5rxerxrxeryrey2,0)(022rxrxrxrxecbrarcebreearNotice is never 0 so is a sol
9、ution of Equation 5 if r is a root of the equation(6)which is called the auxiliary equation(or characteristic equation)of Equation 5.Using the quadratic formula,the root and of the auxiliary equation can be found:(7)rxerxey 02cbraraacbbraacbbr242422211r2r We distinguish three cases according to the
10、sign of the discriminant .acb42 In this case the roots and of the auxiliary equation are real and distinct,so and are two linearly independent solutions of Equation 5.1r2rxrey22xrey11(8)If the roots and of the auxiliary equation are real and unequal,then the general solution of is1r2r02cbrar0 cyybya
11、xrxrececy2121Example 1 Solve the equation06 yyy042acbExample 2 Solve the equation.0322ydxdydxydIn this case ;that is,the root of the auxiliary equation are real and equal.Denote r as the common value of and ,we have(9)21rr 1r2r022barsoabrWe know that is one solution of Equation 5.We now verify that
12、is also a solution:rxey 1rxxey20)(0)(0)()2()()2(22222 rxrxrxrxrxrxrxrxrxxeexecbrarebarcxerxeebxerreacyybya042acb(10)If the auxiliary equation has only one real root r,then the general solution of is02cbrar0 cyybyarxrxrxexccxececy)(2121Since and are linearly independent solutions,Theorem 4 provides u
13、s with the general solution:rxey 1rxxey2Example 3 Solve the equation09124 yyyIn this case the roots and of the auxiliary equation are complex numbers,we can write1r2r)2(4),2(221abacabwhereirir042acbUsing Eulers equationwe write the solution of the differential equation as sincosiei21221121212121)(2)
14、(121,)sincos(sin)(cos)()sin(cos)sin(cos21CCcCCcwherexcxcexCCixCCexixeCxixeCeCeCeCeCyxxxxxixixrxrWe summarize the discussion as follows:(11)If the roots of auxiliary equation are the complex numbers ,then the general solution of is02cbrar0 cyybya)sincos(21xcxceyxirir21,Example 4 Solve the equation.01
15、36 yyyAn initial-value problem for the second-order Equation 1 or 2 consists of finding a solution y of the differential equation that also satisfies initial conditions of the formwhere and are given constants.If P,Q,R,and G are continuous on an interval and there,then a theorem found in more advanc
16、ed books guarantees the existence and uniqueness of a solution to this initial-value problem.1000)()(yxyyxy0y1y0)(xPInitial-value and boundary-value problemsA boundary-value problem for Equation 1 consists of finding a solution of the differential equation that also satisfies boundary conditions of
17、the formIn contrast with the situation for initial-value problems,a boundary-value problem does not always have a solution.1100)()(yxyyxyExample 5 Solve the initial-value problem0)0(1)0(06 yyyyyExample 6 Solve the initial-value problem3)0(2)0(0 yyyyExample 7 Solve the boundary-value problem3)1(1)0(0
18、2 yyyyy15.1 Basic concepts,separable andhomogeneous equations机动 目录 上页 下页 返回 结束 机动 目录 上页 下页 返回 结束 10 Two kinds of equationsAn ordinary differential equation:Basic concepts xyd yxed x We have known the concept of the differential equations.In Sections 8,Such asinvolves an unknown function of a single
19、variable and some of its derivatives.Def:A partial differential equation:involves an unknown function of two or more variables and some of its partial derivatives.Such as22222220uuuxyxxy机动 目录 上页 下页 返回 结束 The order of a differential equation is the order of the highest derivative that appears in the
20、equation.20 The order of the equation2sinyxyyxx yd yxed x22222220uuuxyxxyIs an ordinary differential equation of order 1Is a third-order differential equation Is a second-order partial differential equation 机动 目录 上页 下页 返回 结束 10 Define the separable equations12.1.2 Separable equations()()dyg x f ydxN
21、ote:We study only ordinary differential equations mainlyIn general,a first-order differential equation has the form:(,)dyF x ydx where F is some function of the two variables x and yWhen F can be factored as a function of x times a function(,)()()F x yg x f y Is called a separable equationthen机动 目录
22、上页 下页 返回 结束()()dyg x f ydxForm (1)Also can be written as:()()dyg xdxh y(2)()()h y dyg x dxWe integrate both sides:()()h y dyg x dx()()H yG xCThis defines y implicitly as a function of x.thus,y=f(x)are called general solutions of the equationSometimes,we can solve for y in terms of x,机动 目录 上页 下页 返回 结
23、束 20 An initial-value problem00()y xy()()dyg xdxh yHas a solution satisfies an initial condition of the formThe separable equationWe say this is an initial problem。In general,there is a unique solution to the initial problem given by equations(2),(3)(3)机动 目录 上页 下页 返回 结束 Example 1 cos.ydyexdxcosyyex
24、Solution (a)cos.ydyexdxWrite it ascos.ye dyxdxcos.ye dyxdxThis is the general solution,involves an arbitrary constant CSolution(b)y(0)=1 tell us x=o,y=1 1ln(sin 0)CSo(b)Solve the initial-value problem (a)Solve the differential equation(0)1yy ln(sin)xCsinyexC1ln,C Celn(sin)yx e机动 目录 上页 下页 返回 结束 Examp
25、le 23lnxyxyxySolution:Write it as3ln()xyydydxxWe integrate both sides3ln()xyy dydxx24211ln2422yyxCSoSolve the differential equation机动 目录 上页 下页 返回 结束 Example 32334xxeyy Solution:3ln()xyy dydxxWe integrate both sides3ln()xyy dydxx24211ln2422yyxCSoWrite it asSolve the differential equation机动 目录 上页 下页 返
展开阅读全文