书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型计算方法-函数逼近及FFT-有理逼近、三角函数逼近及FFTch03e-r课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4927472
  • 上传时间:2023-01-26
  • 格式:PPT
  • 页数:14
  • 大小:250.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《计算方法-函数逼近及FFT-有理逼近、三角函数逼近及FFTch03e-r课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    计算方法 函数 逼近 FFT 有理 三角函数 FFTch03e 课件
    资源描述:

    1、1第三章函数逼近与FFT计算方法 有理逼近、三角函数逼近与有理逼近、三角函数逼近与FFT2本节内容本节内容n 有理函数逼近有理函数逼近l 有理逼近与连分式有理逼近与连分式l Pade 逼近逼近n 三角函数逼近三角函数逼近l 最佳平方逼近最佳平方逼近l 最小二乘最小二乘l FFT(快速(快速 Fourier 变换)变换)3有理逼近有理逼近用有理函数来做函数逼近用有理函数来做函数逼近 有理逼近有理逼近0101()()()nnnnmmmmP xaa xa xRxQxbb xb x若函数在某些点附近无界时,则使用有理逼近若函数在某些点附近无界时,则使用有理逼近可能会取得较好的逼近效果可能会取得较好的逼

    2、近效果4举例举例例:例:2341ln(1)(1)234kkkxxxxxxk Taylor 展开展开22ln(1)1223245xxxxxx 连分式连分式222263()66xxRxxx 2344423442063026025()4208405401206xxxxRxxxxx ex35.m5Pade 逼近逼近设设 f(x)的的Taylor 展开为展开为()(1)11(0)()()!(1)!kNNkNkfff xxxkN 部分和记为部分和记为()11(0)()!kNNkkNkkkfPxxc xkPade 逼近逼近设设 f(x)CN+1(-a,a),N=m+n,若有理函数若有理函数011()()()

    3、1nnnnmmmmP xaa xa xRxQxb xb x其中其中 Pn(x)与与 Qm(x)无公因式,且满足无公因式,且满足()()(0)(0)kknmRf 则称则称 Rnm(x)为为 f(x)在在 x=0 处的处的(n,m)阶阶 Pade 逼近逼近k=0,1,N6三角多项式逼近三角多项式逼近l 在在 0,2 上带权上带权 (x)=1 的正交三角函数族:的正交三角函数族:1,cos x,sin x,sin 2x,cos 2x,三角函数逼近主要用于周期函数的数值逼近三角函数逼近主要用于周期函数的数值逼近三角多项式逼近三角多项式逼近l 设设 f(x)是以是以 2 为周期的平方可积函数,则可利为周

    4、期的平方可积函数,则可利用上面的三角函数族对其进行数值逼近。用上面的三角函数族对其进行数值逼近。7最佳平方三角逼近最佳平方三角逼近l f(x)以以 2 为周期且平方可积,则其在为周期且平方可积,则其在 0,2 上上的最佳平方三角逼近为的最佳平方三角逼近为q 最佳平方三角逼近最佳平方三角逼近011()cos()sin()cos()sin()2nnnaS xaxbxanxbnx 20201()cos()d1()sin()dkkaf xkxxbf xkxx (k=0,1,n-1)(k=1,2,n-1)其中其中当当 n 趋于无穷大时,趋于无穷大时,Sn(x)即为即为 f(x)的的 Fourier 展开

    5、展开8三角多项式逼近三角多项式逼近结论结论若若 f(x)在在 0,2 上分段连续,则上分段连续,则()lim()()nnS xS xf x 9最小二乘最小二乘若只给出离散数据若只给出离散数据(xj,yj),其中其中2,0,1,.,1jjxjNN则可类似地得到则可类似地得到 f(x)离散离散 Fourier 逼近逼近(假定假定 N=2m+1)011()cos()sin()cos()sin()2nnnaS xaxbxanxbnx 202022cos212122sin2121mkjjmkjjjkaymmjkbymm (k=0,1,n)(k=1,2,n)其中其中n m10三角插值三角插值()njjS

    6、xy 三角插值三角插值当当 n=m 时可以证明时可以证明故故 Sn(x)为为 f(x)在在点集点集 x0,x1,x2m 上上的三角插值的三角插值(j=0,1,2m)11DFTl 考虑在考虑在 0,2 上带权上带权 (x)=1 的正交三角函数族:的正交三角函数族:23(1)1,ixixixNixeeee 这里的这里的 i 是虚部单位是虚部单位则则 在在 处的函数值为处的函数值为22(1)1ikNkikNNee ikxe2,0,1,.,1jjxjNN 21()00,Ni j k lNjkljkeNjk 离散正交离散正交12DFT2,0,1,.,1jjxjNN则则 f(x)的最小二乘的最小二乘 Fo

    7、urier 逼近为逼近为(n m)10()niknkkS xc e 2101NikjNkjjcy eN (k=0,1,n-1)其中其中l 设设 f(x)以以 2 为周期的为周期的复函数复函数,给定函数值,给定函数值 (xj,yj),其中,其中离散离散 Fourier 变换变换l 当当 n=N 时,时,Sn(x)即为即为 f(x)在在 x0,x1,xn-1 上的插值函数上的插值函数210NikjNjkkyc e (j=0,1,N-1)离散离散 Fourier 逆变换逆变换13DFT令令222cossiniNNeiNN 构造矩阵构造矩阵2000001210242(1)012(1)(1)NNNNNNNNNNNNNNNNNNNNNNF 性质性质(1)性质性质(2)11NNFFN 2NFN 14DFT/FFTDFT 与与 IDFTDFT()cy 2101NikjNkjjcy eN 210NikjNjkkyc e IDFT()yc c=fft(y)/Ny=ifft(c)*Nex36.m

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:计算方法-函数逼近及FFT-有理逼近、三角函数逼近及FFTch03e-r课件.ppt
    链接地址:https://www.163wenku.com/p-4927472.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库