书签 分享 收藏 举报 版权申诉 / 72
上传文档赚钱

类型风力发电原理优质课件.pptx

  • 上传人(卖家):晟晟文业
  • 文档编号:4913686
  • 上传时间:2023-01-25
  • 格式:PPTX
  • 页数:72
  • 大小:10MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《风力发电原理优质课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    风力 发电 原理 优质 课件
    资源描述:

    1、n本章内容本章内容2.1 2.1 风的形成及其风的形成及其特性特性2.2 2.2 风的测量与风的测量与估计估计2.3 2.3 风能资源评估及风电场选址风能资源评估及风电场选址概述概述2.4 2.4 风能转换风能转换基本原理基本原理2.5 2.5 风力机运行特性风力机运行特性1风的形成及其基本特性风的形成及其基本特性n风:指空气相对于地球表面的运动,是由于大气中热力和动力的空间不均匀性所形成的。n大气边界层:受地表摩擦阻力影响的大气层。按高度分成三个区域:底层、下部摩擦层、上部摩擦层。n边界层空气在高度方向上特点:n空气上下对流运动n水平运动速度随高度变化n风向随高度变化n大气湍流特性随高度变化

    2、100下部摩擦层2000上部摩擦层大气边界层低层梯度高度自由大气层大气边界层大气边界层1.风的形成22.风的尺度n小尺度:空间数米到数千米,时间数秒到数天。n中尺度:空间数千米到数百千米,时间数分钟到一周。n天气尺度:空间数百千米到数千千米,时间数天到数周。n行星尺度:空间数千千米以上,时间数周。气流运动的空间和时间尺度33.风的大小n风的大小通常指风速的大小。风速和风向在时间、空间上的变化均是随机的。n通常把风看作是由平均风和脉动风两部分组成。(t)(t)VVV风速0246810121416181336 671 1006 1341 1676 2011 2346 2681 3016 3351

    3、3686 4021风 向01002003004001 292 583 874 11651456174720382329262029113202349337844075风速/m/s风向/度5010015020025030050100150200250300时间/分钟风速和风向时间历程曲线43.风的大小n某地点平均风速的大小除取决于时距外,还与所测点的高度有关,我国规定的标准高度为10m。n风力等级是依据风对地面或海面物体影响而引起的各种现象确定的。n国际上采用的风速等级是1805年英国人蒲福拟定的。在1946年,人们又把第12级(飓风)分为6级。表见下页。5风力级数名 称海面状况海洋船只征象陆地

    4、地面征象相当于空旷平地上标准高度10米处的风速(米/秒)海浪一般(米)最高(米)0静风静静,烟直上 00.21软风0.10.1平常渔船略觉摇动烟能表示风向,但风向标不能动0.31.52轻风0.20.3渔船张帆时,每小时可随风移行23公里人面感觉有风,树叶微响,风向标能转动1.63.33微风0.61.0渔船渐觉颠簸,每小时可随风移行56公里树叶及微枝摇动不息,旌旗展开3.45.44和风1.01.5渔船满帆时,可使船身倾向一侧能吹起地面灰尘和纸张,树的小枝摇动5.57.95清劲风2.02.5渔船缩帆(即收去帆之一部)有叶的小树摇摆,内陆的水面有小波8.010.76强风3.04.0渔船加倍缩帆,捕鱼

    5、须注意风险大树枝摇动,电线呼呼有声,举伞困难10.813.87疾风4.05.5渔船停泊港中,在海者下锚全树摇动,迎风步行感觉不便13.917.18大风5.57.5进港的渔船皆停留不出微枝拆毁,人行向前,感觉阻力甚大17.220.79烈风7.010.0汽船航行困难建筑物有小损(烟囱顶部及平屋摇动)20.824.410狂风9.012.5汽船航行颇危险陆上少见,见时可使树木拔起或使建筑物损坏严重24.528.411暴风11.516.0汽船遇之极危险陆上很少见,有则必有广泛损坏28.532.612飓风14.0海浪滔天陆上绝少见,摧毁力极大32.736.91337.041.41441.546.11546

    6、.250.91651.056.01756.161.26全球性的风全球性的风n大气环流是全球范围内,由于太阳辐射不均匀,产生赤道和极地的温度和气压差异,导致的赤道上空的热空气向极地运动,而极地地面的冷空气向赤道运动的循环状态。n1856年,美国人费雷尔提出了更接近实际的“三圈环流”大气运动模型。1.大气环流三三圈圈环环流流示示意意图图72.季风n季风是随季节变化的风,是在较大的范围内,盛行风向随季节明显变化的反映。n季风形成的主要原因是海陆比热不同而造成的热力差异,从而形成了大尺度的、随着季节交替变化的局部热力环流。一般以年为周期。n全球性的风中,出了大气环流和季风以外,还有急流和大气长波现象。

    7、8 地方性的风地方性的风1.海陆风a)海风的形成 b)陆风的形成海陆风形成示意图92.山谷风谷风的形成示意图 山风的形成示意图 山谷风形成示意图103.焚风a)山前有降水情况 b)山前无降水情况焚风形成示意图11平均风 平均风速是指在某一时间间隔中,空间某点瞬时水平方向风速的 数值平均值,用下式表示。21211()tttdtttVV1 平均风速风能计算常用10分钟(或1小时)平均风速 122 平均风速随高度变化规律 1)对数率变化 0z(t)ln()zVz 距地高度(米);z 0 地表粗燥长度(米),其取值由下表给出:地形沿海区开阔场地建筑物不多的郊区建筑物较多的郊区大城市中心z0/m0.00

    8、50.010.030.100.200.400.801.202.003.00132 平均风速随高度变化规律 2)指数率变化 11zVVz 143 平均风速随时间变化规律 1)平均风速的日变化 由于太阳照射引起地面受热的昼夜变化,导致平均风速在每天范围内也发生相应变化。平均风速的日变化平均风速的日变化153 平均风速随时间变化规律 2)平均风速的月变化 下图是位于中纬度某地平均风速月变化实测曲线。平均风速的月变化情况不同地区会有很大不同,很难找出一般规律。平均风速的月变化平均风速的月变化16所有参数应每1s或2s采样一次,计算平均值时,标准时间间隔为10min。z 距地高度(米);尽可能接近电网并

    9、考虑并网可能产生的影响,通常为10%15%;2)平均风速的月变化风轮运行特性(变桨距风力机)一般uv。微枝拆毁,人行向前,感觉阻力甚大定义风轮轴功率系数(又称风能利用系数)因为存在尾流和涡流影响,风轮叶片下游存在着尾迹涡,它形成两个主要的涡区:一个在轮毂附近,一个在叶尖。大气边界层:受地表摩擦阻力影响的大气层。三个正交方向上瞬时风速分量的湍流强度海面对平均风速概率分布曲线的影响不同地形与平坦地面风速比值渔船满帆时,可使船身倾向一侧有叶的小树摇摆,内陆的水面有小波中尺度:空间数千米到数百千米,时间数分钟到一周。风力等级是依据风对地面或海面物体影响而引起的各种现象确定的。海上年平均风速的威布尔分布

    10、形状系数比陆地大,平均风速随高度的变化比较平缓,湍流强度相对较低,风向也比较稳定。平均风速参考值(ms)3 平均风速随时间变化规律 3)平均风速的季度变化平均风速的季节变化平均风速的季节变化在世界上几乎所有地区,一年内的平均风速都随着季节发生明显规律性的变化。我国大部分地区,最大风速多在春季,而最小风速多在夏季。174 平均风速分布 1)威布尔分布:2)瑞利分布:是威布尔分布在k=2时的特例 kvk 1ckvP vecc式中:k形状系数,c尺度系数 某地的平均风速概率密度曲线某地的平均风速概率密度曲线 0.10.050P(V)P(V)1234k=3.0k=2.5k=2.0k=1.0(瑞利分布)

    11、威布尔分布函数概率密度曲线威布尔分布函数概率密度曲线185 平均风向 最常用的方法是把圆周360分成16个等分,每一个方位范围是22.5。风向方位图风向方位图195 平均风向 某一风向在一年或一个月中出现的频率常用风向玫瑰图表示。Na)形式)形式1 b)形式)形式2风向玫瑰图风向玫瑰图20脉动风脉动风速为瞬间风速与平均风速的差值,因此,其时间平均值为零:1脉动风速21tt1(t)(t)dt0tVV脉动风速的概率密度函数非常接近于高斯分布或正态分布。概率密度函数:221Vp(V)exp22把脉动风看作平稳随机过程,即可用某点长时间的观测样本来代表整个脉动风的统计特性。这里仅介绍其风速、湍流强度和

    12、阵风系数。21不同高度处的风速时间历程曲线 1脉动风速下图是某处不同高度风速的时间曲线。由图可知,脉动风速随高度的减小而增加,这是由于越接近地面受地貌特征及湿度分布影响越大造成的。22湍流强度用来描述变化的程度,反映脉动风速的相对强度2.湍流强度三个正交方向上瞬时风速分量的湍流强度 _222(uv)/3Vu,v,分别为三个正交方向上的脉动风速分量 _2uuV_2vvV_2V一般uv。在工程中,我们主要考虑纵向湍流强度u 2u10.8670.5561lg Z0.246(lg Z)ln(Z/)Z 离地面高度,地表粗糙长度 23下图分别给出了纵向湍流强度随高度和地表粗糙度长度变化的曲线。由图可知,纵

    13、向湍流强度随高度的增加而减小,随地表粗糙度长度的增加而增大。2.湍流强度150100500z/m0.10.20.3u=0.20=0.16=0.120.30.20.10101u-310-210-1z0/mz=30m纵向湍流强度随高度的变化曲线纵向湍流强度随高度的变化曲线纵向湍流强度随地面粗糙长度的变化曲线纵向湍流强度随地面粗糙长度的变化曲线24在结构设计中,需要考虑阵风的影响,因此,引入阵风系数G。阵风系数是指阵风风速与平均风速之比,它与湍流强度有关。湍流强度越大,则阵风系数越大;阵风持续时间越长则阵风系数越小。有关文献给出了如下表达式:3.阵风系数式中 u 纵向湍流强度;T 阵风持续时间 u3

    14、600G(T)10.42lnT25极端风1)热带气旋 2)寒潮大风3)龙卷风1.极端风种类 2.重现期1 N1 1 N若重现期为N,则超过设计最大风速的概率为,保证率就为 取一个大于各年份最大风速平均值的风速作为设计最大风速。从统计学的角度,这个风速要间隔一段时间才出现一次,这段间隔时间叫重现期。26山前有降水情况 b)山前无降水情况。设定风速高:风速高时获得大量风能,风速低时效率低下4)年风能可利用时间:一年中风力发电机组在有效风速范围内的运行时间(一般有效风速范围取325m/s)2)平均风速的月变化渔船加倍缩帆,捕鱼须注意风险大气边界层:受地表摩擦阻力影响的大气层。海面对平均风速概率分布曲

    15、线的影响单位时间内气流流过截面积为S的气体所具有的动能为天气尺度:空间数百千米到数千千米,时间数天到数周。3 风能资源评估及风电场选址概述大气边界层:受地表摩擦阻力影响的大气层。图2-31 桨距角作为参数及 的功率2 平均风速随高度变化规律海面对平均风速概率分布曲线的影响2 平均风速随高度变化规律由于太阳照射引起地面受热的昼夜变化,导致平均风速在每天范围内也发生相应变化。威布尔分布函数概率密度曲线1)风力机转速-气动转矩曲线2 平均风速随高度变化规律3.最大风速概率分布 aa1P(V)expexp(Vb)aa 尺度参数;b 位置参数 _a_aVV6a0.7797_0.44005aaVbV分布函

    16、数:某地年最大风速的累积分布曲线 274.设计最大风速_adaVVV式中,保证系数 60.57722ln(ln)p 重现期N/年30501001000保证率p0.9670.9800.9900.999保证系数2.202.593.144.94设计最大风速可用最大风速累积分布函数来求取。设计最大风速为不同重现期不同重现期N下的保证系数下的保证系数28地形地貌对风的影响1)地面建筑物地面建筑物对风速的扰动区范围大小取决于建筑物的形状(宽高比)。建筑物形状B/H下游距离5H10H20H风速降低/(%)湍流增强/(%)风速降低/(%)湍流增强/(%)风速降低/(%)湍流增强/(%)436251475132

    17、41511540.51114512-0.332.52.51.30.75-0.2522.510.50-尾流区高度1.5H2.0H3.0H注:B为建筑物宽度,H为建筑物高度建筑物形状对下游风特性的影响 建筑物对风特性的影响建筑物对风特性的影响292)地形地形对风速分布的影响更大。山丘、山谷、盆地等不仅会改变风的速度分布,还会使风向产生较大的变化。不同地形平地平均风速/(m/s)3568山间盆地0.950.850.850.70弯曲河谷0.800.700.700.60山脊背风坡0.900.800.800.70山脊迎风坡1.201.101.10峡谷口或山口1.401.301.20不同地形与平坦地面风速比

    18、值不同地形与平坦地面风速比值303)海上风特性 海上年平均风速的威布尔分布形状系数比陆地大,平均风速随高度的变化比较平缓,湍流强度相对较低,风向也比较稳定。260风频(%)52025陆地4海面1015风速(m/s)401200高度(m)5.09.0806.08.0年平均风速(m/s)7.0陆地海上海面对平均风速概率分布曲线的影响海面对平均风速概率分布曲线的影响海面对风速廓线的影响海面对风速廓线的影响31基本要求:风资源测量时,通常按照下表所列项目进行。所有参数应每1s或2s采样一次,计算平均值时,标准时间间隔为10min。测量风速时要在多个高度测量,以确定风的切变特性。测风时间应至少连续一年以

    19、上,项目测量参数记录值基本参数风速/(m/s)平均值,标准偏差,最大/最小值风向/()平均值,标准偏差气温/C平均值,最大/最小值可选参数太阳辐射/(W/m2)平均值,最大/最小值垂直风速/(m/s)平均值,标准偏差大气压/hPa平均值,最大/最小值温度变化/C平均值,最大/最小值32风向测量 n风向标:尾翼、指向针、平衡锤及旋转轴 n风向信号产生:环形电位计、码盘大型风力发电机组上的风向标 33风速测量 n旋转式风速计1.风杯2.螺旋桨叶风杯 螺旋桨式 2vabNcNa数值即为起动风速;N是风速计转速;通常cb(cb10-4)3435n风能资源大小常用风能密度来表示。n风能密度是指垂直于风向

    20、,单位面积上,单位时间流过的空气的动能(功率密度),计算公式为:n平均风能密度 n)风能估计111223222WmVV VV 33100.511()2niiTiV tWVt dtTT n平均功率密度的数学期望(均值)风能估计331()()0.5()2E WEVE V 330()310()30()330()()()()()()kkkVkcVkcVkcE VV p V dVk VVedVc cVV edcVVcedcc 333/30()(3/1)kyE Vc ye dyck ()kVyc 有:令 结论:风能密度仍然符和威结论:风能密度仍然符和威布尔分布。估计平均风能密布尔分布。估计平均风能密度,就

    21、变成了对参数度,就变成了对参数c,k的的估计。估计。K形状系数,C尺度系数 36z 1t0(z)te dt(t0,z0)1)平均风速:年平均风速(30年,至少10年每小时或每10分钟平均风速数据)风:指空气相对于地球表面的运动,是由于大气中热力和动力的空间不均匀性所形成的。下图分别给出了纵向湍流强度随高度和地表粗糙度长度变化的曲线。3 平均风速随时间变化规律设定风速低:风速低时产生功率小,风速高时发生失速,效率偏低为有效范围内的概率分布函数1)转速设定对输出功率的影响(恒速风机)1)转速设定对输出功率的影响(恒速风机)风向信号产生:环形电位计、码盘有叶的小树摇摆,内陆的水面有小波所有参数应每1

    22、s或2s采样一次,计算平均值时,标准时间间隔为10min。,通常为10%15%;3)桨盘上没有摩擦力;这里仅介绍其风速、湍流强度和阵风系数。建筑物有小损(烟囱顶部及平屋摇动)纵向湍流强度随地面粗糙长度的变化曲线风速和风向时间历程曲线风:指空气相对于地球表面的运动,是由于大气中热力和动力的空间不均匀性所形成的。若重现期为N,则超过设计最大风速的概率为设定风速低:风速低时产生功率小,风速高时发生失速,效率偏低n最小二乘法估计 风能估计(c和k的估计)10()1KKggvvvCKCgKvP vvedveC C lnln 1lnlnlnlnlnggggvP vvKKvCKvKCC取对数:令 gvvPy

    23、1lnlngvxlnCKalnb=K,则:bxay 222iiiiiiixxnyxxyxa 22iiiiiixxnyxnyxb baeCK=b 得到的风速出现范围划成n个风速区间,统计各风速间隔出现的频率f1fn,计算累计频率P1=f1,P2=P1+f2 iivxlniiPy1lnln37取n平均风速和标准差估计 风能估计(c和k的估计)通常用如下近似关系式求解K 在应用中,我们用平均风速来估计 和 11KCvE 221112KKCvD 086.1vEvDK 11KvEC vE vD 1111222KKvEvD38 i1E vvvN 222ii11D vvvvvNNn平均风速和最大风速估计风能

    24、估计(c和k的估计)由 有maxv为在时间段T内观测到的10min平均最大风速,它出现的概率为 TevvPKCv1maxmaxkCveTmaxCvTKmax1lnCvK1111KvC11ln1maxKTvvKK值通常在1.02.6之间,此时 因此:90.011K)90.0ln(lnlnmaxvvTK 11KvC39n年均有效风能估计 风能估计年平均有效风能是指一年中在有效风速范围内的风能的平均密度,可用下式计算 312nmvevWvp v dv p v有效风速范围(目前通常为3m/s25m/s),为有效范围内的概率分布函数 mvnv ()()()()()mnnmp vp vp vp vvvp

    25、vvp vv()3331()()()1()nmvknckkmnmvvvkvvvccE vv p v dvk vvedvc cee(在应用中,可以用数值积分的办法得到)31()2eWE v40指标丰富区较丰富区可利用区贫乏区年有效风能密度W200200150150100100风速3ms年累计时数h500050004000400020002000风速6ms年累计时数h2000220015001500350350占全国面积百分比8185024高度10m30m50m风 功 率 密 度等级风 功 率 密 度(w)平均风速参考值(ms)风功率密度(w )平 均 风 速 参考值(ms)风 功 率 密 度(w

    26、 )平均风速参考值(ms)应用110044160512005621001505116024059200300643150200562403206530040070较好4200250603204007040050075好5250300644004807450060080很好6300400704806408260080088740010009464016001108002000119国国际际上上风风电电场场风风能能资资源源等等级级划划分分 412.3 风能资源评估及风电场选址概述 风风能能资资源源四四类类区区域域风能资源评估 n目的:预测风能转化成电能的潜力n主要评估参数:1)平均风速:年平均风速

    27、(30年,至少10年每小时或每10分钟平均风速数据)2)主要风向分布:依据多年统计资料和至少最近一年实测数据 3)风功率密度:由风速和空气密度得到4)年风能可利用时间:一年中风力发电机组在有效风速范围内的运行时间(一般有效风速范围取325m/s)421)宏观选址:u风能质量好 u风向基本稳定u风速变化小 u尽量避开灾难性天气频发地区 u发电机组高度范围内风速的垂直变化小(垂直切变小)u地形条件好地形尽可能单一 u地质情况能满足塔架基础、房屋建筑施工的要求,远离强地震带等 u对环境不利影响小 u尽可能接近电网并考虑并网可能产生的影响 u交通方便 风能资源分析软件:WASP(Wind Atlas

    28、Analysis and Aplicationg Programs)风电场选址432)微观选址:u考虑地形的影响平坦地形:考虑地面障碍物 复杂地形:在山丘和谷地,要考虑谷地方向与主要盛行风向的关系u考虑机组的排列方式 对于平坦地形,盛行主风向为一个或相反的两个方向时,一般按矩阵式排列;多盛行风向,一般采用田字型或园型排布,发电机组间距通常取1012倍风轮直径。风电场的设计优化软件:WindFarmer(Wind Farmer Design and Optimigzation Software)风电场选址44 -相对厚度,-最大厚度,即弦长法线方向之翼型最大厚度;A点-前缘点;B点-后缘点,A、

    29、B点相距最远;-弦长,是两端点A、B连线方向上翼形的最大长度;1、桨叶翼型参数、桨叶翼型参数2.4 风能转换基本原理 lCClCC/i,通常为10%15%;-桨距角,是风轮旋转平面与弦线间的夹角;-攻角,是来流速度方向与弦线间的夹角;2、桨叶上的气动力、桨叶上的气动力 空气动力的一个分力与气流方向垂直,它使平板上升,称为升力;另一个分力与气流方向相同,称为阻力。222212121SVCFSVCFSVCFddllr升力系数与阻力系数之比称为升阻比 dlCCrClCdC-总的气动力系数,无量纲;-升力系数,无量纲;-阻力系数,无量纲。平地平均风速/(m/s)-最大厚度,即弦长法线方向之翼型最大厚度

    30、;风速3ms年累计时数h表面粗糙度和雷诺数的影响1、风轮动量理论(贝兹极限理论)得到的风速出现范围划成n个风速区间,统计各风速间隔出现的频率f1fn,计算累计频率P1=f1,P2=P1+f2-升力系数,无量纲;风能估计(c和k的估计)小尺度:空间数米到数千米,时间数秒到数天。在工程中,我们主要考虑纵向湍流强度u2 平均风速随高度变化规律1)中心涡,集中在转轴上;设定风速低:风速低时产生功率小,风速高时发生失速,效率偏低平均值,标准偏差,最大/最小值实度对风力机特性的影响中尺度:空间数千米到数百千米,时间数分钟到一周。定义风轮轴功率系数(又称风能利用系数)风向标:尾翼、指向针、平衡锤及旋转轴为在

    31、时间段T内观测到的10min平均最大风速,它出现的概率为平地平均风速/(m/s)3、影响升力系数和阻力系数的因素、影响升力系数和阻力系数的因素 u攻角的影响 u翼型的影响(弯度、厚度及前缘)u表面粗糙度和雷诺数的影响风能转换基础理论风能转换基础理论 1、风轮动量理论(贝兹极限理论)理想假设(不考虑风轮尾流的旋转)1)气流是不可压缩的均匀定常流;)气流是不可压缩的均匀定常流;2)风轮简化成一个浆盘;)风轮简化成一个浆盘;3)桨盘上没有摩擦力;)桨盘上没有摩擦力;4)风轮流动模型简化成一个单元流管;)风轮流动模型简化成一个单元流管;5)风轮前后远方的气流静压相等;)风轮前后远方的气流静压相等;6)

    32、轴向力(推力)沿浆盘均匀分布。)轴向力(推力)沿浆盘均匀分布。风轮流动的单元流管模型 单位时间内气流流过截面积为S的气体所具有的动能为 231122EmVSV2、风轮动量理论(贝兹极限理论)由动量方程得到作用在风轮上的轴向力F为:风轮(3)(2)(1)(3)(1)(1)S1 V1S VS2 V21212Fm VVSV VVabFS pp根据右图:2211222211221122abVpVpVpVp由伯努利方程可得:假设风轮远方的气流静压相等,即 得:12pp221212abppVV由:风轮(3)(2)(1)(3)(1)(1)S1 V1S VS2 V22212221212121211222aba

    33、bppVVFS VVVVVFS ppFm VVSV VV这表明流过风轮的速度是风轮前来流风速和风轮后尾流速度的平均值。根据能量方程有:221211221222121122222VVPSVVVVVVVPSVV222211121222Pm VVSV VV当:此值称之为贝兹(Betz)极限,它表示在理想情况下,风轮最多能吸收59.3的风的动能,也就是说其理论最大效率值为0.593,说明风轮从自然风中所能索取的能量是有限的。22112221(23)04dPSV VVVVdV时,则P出现极值,求解后得 2121/3VVVV 定义风轮轴功率系数(又称风能利用系数)2138max12722121122/32

    34、VVPSVVVPSVVpCPPCE可提取的风能输入的风能maxmax3112160.59327pPCSV2、风轮叶素理论 叶素:叶素:将风轮叶片沿展向分成若干个微元,这些微元称为叶素。基本思想:基本思想:通过对叶素的受力分析求得作用在每个叶素上的力和转矩,再将所有微元转矩和力相加得到风力发电机桨叶上的力和转矩。叶素受力分析 气流相对于叶片的相对速度为:212212*ldwvudSl drdLC lw drdDC lw dr212212aauudFC lw drdFC lw dr由受力分析图可知:)cossin(IdDIdLrdFrdTuI-倾角,为桨距角 与攻角i之和,令升阻比 :lcCC/2

    35、12sin(1cot)ldTrlw CII drPT风轮的总转矩是由风轮桨叶所有叶素的转矩微元之和。根据同样可以由总转矩得到风力机吸收总的风能。3 涡流理论 因为存在尾流和涡流影响,风轮叶片下游存在着尾迹涡,它形成两个主要的涡区:一个在轮毂附近,一个在叶尖。当风轮旋转时,通过每个叶片尖部的气流的迹线为一螺旋线,在轮毂附近也存在同样的情况,风速的涡流系统如下图。风速的涡流系统 由涡流引起的风速可看成是由下列三个涡流系统叠加的结果:1)中心涡,集中在转轴上;2)每个叶片的边界涡;3)每个叶片尖部形成的螺旋涡。3 涡流理论 涡流系统对风力发电机的影响可以分解为对风速和对风轮转速两方面。涡流形成的气流

    36、通过风轮的轴向速度与风速方向相反,旋转速度方向与风轮转速方向相同 ,矢量图如下图。风速的涡流系统 假定:aava vub u()(1)()(1)aavva vuub u叶素理论中相对风速及对应倾角也发生相应变化:221*)1(*)1(ubvawubvaI)1()1(arctan12.5 风力机运行特性风力机运行特性 风轮空气动力特性 风力机基本特性,即风轮的空气动力特性,通常由一簇包含风能利用系数Cp和叶尖速比的无因次性能曲线来表达,Cp是叶尖速比和桨距角的高阶非线性函数。例:一种拟合公式:051015-0.2-0.100.10.20.30.40.5叶尖速比风能利用系数0 deg 2 deg

    37、5 deg 10 deg 15 deg 20 deg 7 Cp,max vRr12.53116(,)0.22(0.45)110.0350.081ipiiCe 31(,)2pPCSv 3)桨盘上没有摩擦力;593,说明风轮从自然风中所能索取的能量是有限的。得到的风速出现范围划成n个风速区间,统计各风速间隔出现的频率f1fn,计算累计频率P1=f1,P2=P1+f2-最大厚度,即弦长法线方向之翼型最大厚度;设定风速高:风速高时获得大量风能,风速低时效率低下威布尔分布函数概率密度曲线陆上很少见,有则必有广泛损坏z 距地高度(米);3)风功率密度:由风速和空气密度得到下图是位于中纬度某地平均风速月变化

    38、实测曲线。设定风速高:风速高时获得大量风能,风速低时效率低下渔船渐觉颠簸,每小时可随风移行56公里2)平均风速的月变化-最大厚度,即弦长法线方向之翼型最大厚度;2、风轮动量理论(贝兹极限理论)湍流强度用来描述变化的程度,反映脉动风速的相对强度地形条件好地形尽可能单一风速3ms年累计时数h在结构设计中,需要考虑阵风的影响,因此,引入阵风系数G。2 平均风速随高度变化规律风轮空气动力特性 保持节距角不变,用一条曲线就能描述出它作为的函数的性能和表示从风能中获取的最大功率。风力机从风中捕获的机械功率为 16141086402Cp0.10.20.30.40.512Cpmaxopt312()PPSCv在

    39、任何风速下,只要使得风轮的尖速比opt,就可维持风力机在Cpmax下运行,opt称为最佳叶尖速比。使风力机维持在最佳叶尖速比运行的主要通过控制风力机转速来达到这一目的,这时风力机从风能中获取的机械功率为:31max2PPSCv风轮运行特性(定桨距风力机)1)转速设定对输出功率的影响(恒速风机)设定风速低:风速低时产生功率小,风速高时发生失速,效率偏低设定风速高:风速高时获得大量风能,风速低时效率低下解决办法:双速风力发电机 2)桨距角设定的影响扭曲叶片;桨距角设定;桨距角调整风轮运行特性(变桨距风力机)启停特性:1)采用大的正桨距角时可以在叶轮启动时产生大的启动扭矩 2)关机时采用90度桨距角

    40、,这样可以降低叶轮的空转速度以便施加制动刹车 运行特性:1)风力机转速-气动转矩曲线 2)风力机转速-输出功率曲线 风力机转速-输出功率曲线风速作为参数及 的风轮功率 0风力机转速-输出功率曲线图2-31 桨距角作为参数及 的功率 12/Vm s风轮运行特性(变桨距风力机)不同风速下的扭矩转速特性 1)功率限制:所有电路及电力电子器件受功率限制;2)转速限制:所有旋转部件的机械强度受转速限制。CBACpmax曲线d扭矩限定XcbV8V7V6Ma功率限定扭 矩V5风力机转速YV3V4V1V20实度对风力机特性的影响 实度可以通过改变叶轮的桨叶数量改变,也可以通过改变桨叶的弦长来改变 实度:风力机

    41、叶片的投影面积所占风轮面积的比例2BSRB为叶片个数;S为叶片对风投影面积 实度变化对风能利用系数的影响 风的形成及其基本特性风的形成及其基本特性n风:指空气相对于地球表面的运动,是由于大气中热力和动力的空间不均匀性所形成的。n大气边界层:受地表摩擦阻力影响的大气层。按高度分成三个区域:底层、下部摩擦层、上部摩擦层。n边界层空气在高度方向上特点:n空气上下对流运动n水平运动速度随高度变化n风向随高度变化n大气湍流特性随高度变化100下部摩擦层2000上部摩擦层大气边界层低层梯度高度自由大气层大气边界层大气边界层1.风的形成652 平均风速随高度变化规律 2)指数率变化 11zVVz 66湍流强

    42、度用来描述变化的程度,反映脉动风速的相对强度2.湍流强度三个正交方向上瞬时风速分量的湍流强度 _222(uv)/3Vu,v,分别为三个正交方向上的脉动风速分量 _2uuV_2vvV_2V一般uv。在工程中,我们主要考虑纵向湍流强度u 2u10.8670.5561lg Z0.246(lg Z)ln(Z/)Z 离地面高度,地表粗糙长度 672)地形地形对风速分布的影响更大。山丘、山谷、盆地等不仅会改变风的速度分布,还会使风向产生较大的变化。不同地形平地平均风速/(m/s)3568山间盆地0.950.850.850.70弯曲河谷0.800.700.700.60山脊背风坡0.900.800.800.7

    43、0山脊迎风坡1.201.101.10峡谷口或山口1.401.301.20不同地形与平坦地面风速比值不同地形与平坦地面风速比值683)海上风特性 海上年平均风速的威布尔分布形状系数比陆地大,平均风速随高度的变化比较平缓,湍流强度相对较低,风向也比较稳定。260风频(%)52025陆地4海面1015风速(m/s)401200高度(m)5.09.0806.08.0年平均风速(m/s)7.0陆地海上海面对平均风速概率分布曲线的影响海面对平均风速概率分布曲线的影响海面对风速廓线的影响海面对风速廓线的影响69n最小二乘法估计 风能估计(c和k的估计)10()1KKggvvvCKCgKvP vvedveC

    44、C lnln 1lnlnlnlnlnggggvP vvKKvCKvKCC取对数:令 gvvPy1lnlngvxlnCKalnb=K,则:bxay 222iiiiiiixxnyxxyxa 22iiiiiixxnyxnyxb baeCK=b 得到的风速出现范围划成n个风速区间,统计各风速间隔出现的频率f1fn,计算累计频率P1=f1,P2=P1+f2 iivxlniiPy1lnln70取 -相对厚度,-最大厚度,即弦长法线方向之翼型最大厚度;A点-前缘点;B点-后缘点,A、B点相距最远;-弦长,是两端点A、B连线方向上翼形的最大长度;1、桨叶翼型参数、桨叶翼型参数2.4 风能转换基本原理 lCCl

    45、CC/i,通常为10%15%;-桨距角,是风轮旋转平面与弦线间的夹角;-攻角,是来流速度方向与弦线间的夹角;2 平均风速随高度变化规律-桨距角,是风轮旋转平面与弦线间的夹角;设定风速高:风速高时获得大量风能,风速低时效率低下平地平均风速/(m/s)人面感觉有风,树叶微响,风向标能转动平均风速的月变化情况不同地区会有很大不同,很难找出一般规律。2 平均风速随高度变化规律实度对风力机特性的影响风能资源分析软件:WASP(Wind Atlas Analysis and Aplicationg Programs)下图是位于中纬度某地平均风速月变化实测曲线。4 风能转换基本原理平地平均风速/(m/s)风速3ms年累计时数h-最大厚度,即弦长法线方向之翼型最大厚度;风:指空气相对于地球表面的运动,是由于大气中热力和动力的空间不均匀性所形成的。z 距地高度(米);湍流强度用来描述变化的程度,反映脉动风速的相对强度3 平均风速随时间变化规律由动量方程得到作用在风轮上的轴向力F为:设定风速高:风速高时获得大量风能,风速低时效率低下风力机转速-输出功率曲线图2-31 桨距角作为参数及 的功率 12/Vm s

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:风力发电原理优质课件.pptx
    链接地址:https://www.163wenku.com/p-4913686.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库