防错法原始精选课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《防错法原始精选课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 防错法 原始 精选 课件
- 资源描述:
-
1、防错法原始目录1、前言 墨菲定律 防错法的精髓2、防错法简介3、防错法的原理 对待失误的两种方式 Poka-Yoke的特点 Poka-Yoke的四种模式4、防错法的技术和工具 防错法五大思路 防错法十大法则5、防错法应用实例2023-1-242前言2023-1-243前言:在1949年美国空军进行MX981实验,需要做一个人体试验,试验的内容是测验一个人的身体对速度增加能有多大容限。测验之一,是用一套16个“加速表”装在被验者身体的各部分。这些仪器有对与不对两种装法,果不其然,负责装配的那位员工,把16件仪器统统都装错了。参加试验的人最终的结果显而易见.!2023-1-244墨菲定律:如果坏事
2、有可能发生,不管这种可能性多么小,它总会发生,并引起最大可能的损失。错误在有可能出现时,就一定会出现。问题总是出现在最坏的时候。2023-1-245墨菲定律告诉我们:1、任何事都没有表面看起来那么简单;Nothing is as simple as it seems.2、所有的事都会比你预计的时间长;All things will be a long time than you expect.3、会出错的事总会出错;Anything that can go wrong will go wrong.4、如果你担心某种情况发生,那么它就更有可能发生。If you are worried about
3、 some sort of happens,then it is more likely to occur.2023-1-246 1986年1月28日,“挑战者”号在升空73秒后爆炸,7名宇航员全部罹难.根据调查这一事故的总统委员会的报告,爆炸是因一个O型封环失效所致。这个封环位于右侧固体火箭推进器的两个低层部件之间。失效的封环使炽热的气体点燃了外部燃料罐中的燃料。O型封环会在低温下失效,尽管在发射前夕有些工程师警告不要在冷天发射,但是由于发射已被推迟了五次,所以警告未能引起重视。这次事件是人类航天史上最严重的一次载人航天事故,造成直接经济损失12亿美元,并使航天飞机停飞近三年。同时,它让全世
4、界对征服太空的艰巨性有了一个明确的认识。“挑战者”号的宇航员是人类航天事业的先驱。让我们记住这些名字,他们是:机长弗朗西斯斯科比(46岁)、驾驶员迈克尔史密斯(40岁)、宇航员朱迪恩雷斯尼克(36岁)、罗纳德麦克奈尔(35岁)、鬼冢(39岁)、格里高利杰维斯(41岁)、女教师克里斯塔麦考利夫(37岁)。2023-1-24799.9%的正确率意味着什么?每天北京机场有一次飞机着陆是不安全的!每年发生两万起药物处方错误!每天发生50起新生婴儿掉在地上的事件!每小时发生两万起支票帐户的错误!一个人一生出现三万二千次心跳异常!代表我们每月最少报废100台冰箱!2023-1-2480.1%的错误率又意味
5、着什么?2023-1-249防错法的精髓:一个世界500强的日用品生产商,在制造香皂的生产线上发现会有没有香皂的空盒子从流水线上流入包装箱,造成客户投诉,于是工厂立即为此成立一个team来解决这个问题,问题最终获得解决!在最后一段流水线增加了一个称重装置,并能自动将重量超出设定公差的包装盒剥离流水线,经过一段时间的监视使用,最后成功关闭了该问题,并做了Success story在整个集团中分享。2023-1-2410检测是在作业失误时自动提示的防错方法,大都通过计算器软件实现,为目前广泛使用的防错方法。8%),其次为作业方法和设备原因。11、该工序作业节拍是否快?如装配机壳,假设正确的装配方法
6、是先装一颗螺丝,后装对角螺丝,第三步装其余螺丝中的一个,如作业指导为随机装配螺丝,则可能发生装配间隙等失误。藉用二个以上的动作必需共同或依序执行才能完成工作。3、消除返工及其引起的浪费。通/止/通类测量工具可以迅速判断产品是否合格,与通过测量取得连续数据相比,通/止/通类测量工具效率高,成本低,判断准确,基本未增加作业员负担,这使100%检查变得轻松容易。接触方法的例子用于根源性检查由于作业人员判断或决策能力过慢而导致的失误,如锡槽焊接时间为3秒之内,而作业员5秒后才将漆包线从锡槽内拿出,而导致绝缘不良。油库的充油软管与联结处是比较容易脱落的,同时软管一脱落则油路自动切断,这样就不会因为司机或
7、加油人员的粗心造成太多的损失。齿规检测、量具/检具等。三、防错法应用举例:防止零件反向除了从源头上预防外,发现失误对防错来说十分重要,下表列明了几种常见的检测项目及检测装置:由于不熟悉作业过程或步骤,产生失误就很难避免,如让一个刚经过培训的新手去做焊接工序,产生失误的概率比熟手肯定大得多。判断型检测是指在通过对产品的检测和挑选,以将不合格品从合格品中挑选出来的检测方法,一般LQC所进行的检验和测试均为判断型检测。有形Poka-Yoke防错模式是针对产品、设备、工具和作业者的物质属性,采用的一种硬件防错模式。防错法的精髓:同时另一个做肥皂的乡镇企业也发生了同样的问题,空包装盒流入包装箱,私人老板
8、立马命令生产线班长解决此问题。那位班长在生产线转了半天后,找来一台电扇,调整了一下距离流水线的距离,风扇的风正好可以将空盒子吹下来,班长满意的走了。2023-1-2411防错法简介2023-1-2412防错法的定义:防错法(Poka-Yoke),又称愚巧法、防呆法,意思是在过程失误发生之前即加以防止。是一种在作业过程中采用自动作用、报警、标识、分类等手段,使作业人员不特别注意也不会失误的方法,换句话说,就连傻子都不会做错。2023-1-2413防错法的定义:狭义:如何设计一个东西,使错误绝不会发生。广义:如何设计一个东西,而使错误发生的机会减至最低的程度。因此,更具体的说“防错法”是:1.具有
9、即使有人为疏忽也不会发生错误的构造不需要注意力。2.具有外行人来做也不会错的构造不需要经验与直觉。3.具有不管是谁或在何时工作都不会出差错的构造不需要专门知识与高度的技能。2023-1-2414防错法的作用:在作业过程中,作业者不时会因疏漏或遗忘而发生作业失误,由此所致的质量缺陷所占的比例很大,如果能够用防错法防止此类失误的发生,则质量水平和作业效率必会大幅提高。1、防错法意味着“第一次就把事情做好”。因为防错法采用一系列方法和或工具防止失误的发生,某结果即为第一次即将事情做好。2、提升产品质量,减少由于检查而导致的浪费。3、消除返工及其引起的浪费。2023-1-2415图示:防错法的作用:2
10、023-1-2416藉用二个以上的动作必需共同或依序执行才能完成工作。第2步:追溯缺陷的发现工序和产生工序;机器设备上的计数器防止过量生产;快件内加入报纸防止快件运输过程中损坏;参加试验的人最终的结果显而易见.即忘记了作业或检查步骤,比如忘记在打中门铰螺丝之前先装上垫片。机器设备上的计数器防止过量生产;查检表在各个企业的使用相当普遍,是最基本的一种防错方法之一。设计专用包装模板,每位包装员工人手一个。在一制程中,同一天要更换多个机种,作业员偶而会装错件。每天北京机场有一次飞机着陆是不安全的!在早期的照相机产品中,在不过胶卷的状态下快门可以重复按下。一个人一生出现三万二千次心跳异常!有形Poka
11、-Yoke防错模式是针对产品、设备、工具和作业者的物质属性,采用的一种硬件防错模式。行程开头的工作原理为其被压下时导通(或关断),驱动外电路动作,示意如下图:用钻床来钻孔时,常常因为组件置放反向而造成钻洞位置错误,而这种错误往往要等到组装时才发现。根据质量杠杆原理,在此阶段的检测收益比判断式检测高一百倍,目前很多公司已认识到溯源型检测的意义,开始探索和实施溯源型检测。第5步:确认工序是否存在以下问题:(1)专用防错工具、仪器:认识失误与缺陷:失误是由于作业者疏忽等原因造成的。而缺陷是失误所产生的结果,比如由于作业者疏漏而产生的结果,如,由于作业者疏漏而产生装螺丝作业失误,而导致汽车轮胎漏装一颗
12、螺丝的缺陷。缺陷与失误举例如下表:失误失误缺陷缺陷漏放防震胶脚压缩机振动噪声大漏检外观凹花伤等漏打螺丝顶盖松动、卡条松脱漏贴铭牌冰箱少铭牌,客户投诉因为失误是造成缺陷的原因,故可通过消除或控制失误来消除缺陷。2023-1-2417产生失误的一般原因:产生失误的基本原因有以下九个:1、忘记:即忘记了作业或检查步骤,比如忘记在打中门铰螺丝之前先装上垫片。2023-1-24182、对过程/作业不熟悉:由于不熟悉作业过程或步骤,产生失误就很难避免,如让一个刚经过培训的新手去做焊接工序,产生失误的概率比熟手肯定大得多。产生失误的一般原因:2023-1-24193、识别错误:识别错误是对工作指令或程序判断
13、或理解错误所致。如作业指导书说明烧焊时必须预热到铜管变成鲜红色,但焊工却误以为预热一下就可以了。4、缺乏工作经验:由于缺乏工作经验,很容易产生失误,如,让一个从未在企业中做过的人去进行制造过程管理,就比较容易产生失误。产生失误的一般原因:2023-1-24205、故意失误:出于某种原因,作业者有意造成的失误,如被组长骂了,心里很不爽,故意不打螺丝、不放垫片等。6、疏忽:这类失误是由于作业者不小心所造成,失误的很大一部分是由此类原因造成,如晚上没有休息好,精神状态差。7、行动迟缓:由于作业人员判断或决策能力过慢而导致的失误,如锡槽焊接时间为3秒之内,而作业员5秒后才将漆包线从锡槽内拿出,而导致绝
14、缘不良。产生失误的一般原因:2023-1-24218、缺乏适当的作业指导:由于缺乏作业指导或作业指导不当,发生失误的概率是相当大的。如装配机壳,假设正确的装配方法是先装一颗螺丝,后装对角螺丝,第三步装其余螺丝中的一个,如作业指导为随机装配螺丝,则可能发生装配间隙等失误。9、突发事件:由于突发事件而导致作业人员措手不及,从而引起失误,现实中此类原因引起的失误较少,如,正在灌注泡料的时候停电,造成箱体假满。产生失误的一般原因:2023-1-2422产生失误的其他原因:误导产生的错觉 过分关注产生的幻觉 观察的细致程度 观察的不同角度 悖论 惯性思维 盲点2023-1-2423产生失误的其他原因:2
15、023-1-2424销售给客户的冰箱有条形码及日期标识等信息,可以在客户投诉后追溯到冰箱的生产工厂、日期等信息,及时追回防止质量问题影响扩大化等;Poka-Yoke的四种模式:出于某种原因,作业者有意造成的失误,如被组长骂了,心里很不爽,故意不打螺丝、不放垫片等。如,加油站油枪不同标号的油使用不同大小的枪管;供电变压器架在高处或用防护栏围起来;四、几类常见防错装置:查检表接触方法的例子用于根源性检查3、编组和计数式Poka-Yoke防错:三、防错法应用举例:防止未加工除了从源头上预防外,发现失误对防错来说十分重要,下表列明了几种常见的检测项目及检测装置:如装配机壳,假设正确的装配方法是先装一颗
16、螺丝,后装对角螺丝,第三步装其余螺丝中的一个,如作业指导为随机装配螺丝,则可能发生装配间隙等失误。1、自检和互检是最基础、最原始,但颇为有效的防错方法;每天北京机场有一次飞机着陆是不安全的!通常使用于冲床、成型机、注塑机等单一设备,用于记录生产数量。可以用在那些必须附加固定数量的部件/重复固定数量操作步骤的岗位。Poka-Yoke的四种模式:设计专用包装模板,每位包装员工人手一个。如,经常有客户投诉电机罩第1颗固定螺因此,简化流程为较好的防错方法之一,但流程简化并不能完全防止人为缺陷的产生。文件中存在与该交易无关的重要信息。狭义:如何设计一个东西,使错误绝不会发生。产生失误的其他原因:2023
17、-1-2425产生失误的其他原因:2023-1-2426产生失误的其他原因:2023-1-2427产生失误的其他原因:2023-1-2428产生失误的其他原因:2023-1-2429制造过程常见失误:制造过程不同,其失误种类也千差万别,但大致可归为以下几类:0101、漏掉某个作业步骤、漏掉某个作业步骤0606、工件加工错误、工件加工错误0202、作业失误、作业失误0707、误操作、误操作0303、工件设置错误、工件设置错误0808、调整失误、调整失误0404、缺少零部件、缺少零部件0909、设备参数设置不当、设备参数设置不当0505、用错零部件、用错零部件1010、工装夹具准备不当、工装夹具准
18、备不当2023-1-2430交易过程常见失误:交易过程常见失误有以下几类:文件中漏掉重要信息;文件中存在错误信息;文件中存在与该交易无关的重要信息。2023-1-2431三类检测方法和区别:检测是进行质量控制的有效手段,根据检测的性质及进行检测的阶段,可将其分为三类:1、判断型检测:判断型检测是指在通过对产品的检测和挑选,以将不合格品从合格品中挑选出来的检测方法,一般LQC所进行的检验和测试均为判断型检测。2、信息型检测:信息型检测是通过抽样方法取得检测数据,并利用此数据,来监控生产过程的稳定性。统计过程控制(SPC)方法所进行的检测即为信息型检测。2023-1-24323、溯源型检测:溯源型
19、检测是对过程的作业条件进行检测和确认,以保证在作业之前即满足高质量生产所需的条件。如新产品开发设计过程的设计数据审查及测量系统评估即为溯源型检测。三类检测方法和区别:2023-1-24331、判断型检测:判断型检测是一种事后补救方式,它不能防止缺陷的产生,只可以发现并隔离缺陷并为后续改善提供某些信息,相当于救火。等到火警发生才去扑救,往往损失惨重。理想的过程应该是免检的,即通过预防使过程缺陷为零,自然无须去检验,由于质量管理水平有限,目前绝大多数公司都在浪费大量的人力物力进行判断型检测,在质量管理水平很高的公司投入在判断式检测上的资源相对要少得多,当然最终的目标是完全取消判断式检测。三类检测方
20、法和区别:2023-1-24342、信息型检测:信息型检测带有预防性质,虽然它在抽检时间上是与生产过程同步进行的,但通过信息型检测可以及时发现过程是否处于统计受控状态,一旦有失控迹象,可以灵敏地在控制图上显现出来,从而可以将缺陷原因消灭在萌芽状态。信息型检测投入的成本比判断型检测少得多,效果也好很多。目前质量管理水平较高的公司均广泛采用信息型检测技术。三类检测方法和区别:2023-1-24353、溯源型检测:溯源型检测是真正意义上的预防型检测。它通过对源头上即设计阶段进行检测从而确保产品和制造过程设计能够满足质量要求。根据质量杠杆原理,在此阶段的检测收益比判断式检测高一百倍,目前很多公司已认识
21、到溯源型检测的意义,开始探索和实施溯源型检测。三类检测方法和区别:2023-1-2436防错法的原理2023-1-2437 在上一节我们讲述了出现失误的九大原因和常见的失误现象。仔细分析这些失误原因我们会发现,产生失误的原因基本可归为三大类,即人的原因、方法原因和设备原因,如下表:失误原因失误原因原因归类原因归类所占比例所占比例忘记人77.8%对过程/作业不熟悉人缺乏工作经验人故意失误人疏忽人行动迟缓人缺乏适当的作业指导方法11.1%突发事件设备11.1%从表中可以看出,在导致失误的原因中,人占了绝大部分(77.8%),其次为作业方法和设备原因。2023-1-2438对待失误的两种方式:1、传
22、统的失误防止方式:人为失误所占的比重很大,所以长期以来,一直被各大公司沿用的防止人为失误的主要措施是“培训与惩罚”,但只能解决缺乏工作经验、缺乏适当的作业指导所导致的失误。由于人为疏忽、忘记等所造成的失误却很难防止。经长期以来的大量实践及质量学者研究发现:惩罚与教育相结合的防错方式并不怎么成功。2023-1-2439对待失误的两种方式:2、Poka-Yoke的观点:随着质量标准也越来越高,美国质量管理大师菲利浦克劳士比提出了质量“零缺陷”的理论,很快成为最新的质量标准,各优秀企业均以此为追求目标。很明显仅靠“培训和惩罚”的传统防错方法所取得的效果与新的质量标准相去甚远。为了适应新的质量标准,企
23、业管理人员须杜绝失误,而要杜绝失误,须首先弄清楚产生失误的根本原因,然后针对原因采取对策。前面我们已讨论过,传统方法可以防止产生失误的人为原因中的一部分,而因为人为疏忽、忘记等原因所造成的失误无法靠培训和惩罚来消除。2023-1-2440Poka-Yoke的特点:(1)全检产品,但不增加作业者负担;(2)必须满足Poka-Yoke规定操作要求,方可成功;(3)低成本/低投入;(4)实时发现失误,实时反馈。比较可知,传统防错方式通过培训和惩罚解决了部分失误,而POKA-YOKE可以从根本上解决失误问题。2023-1-2441Poka-Yoke的四种模式:在Poka-Yoke针对不同的过程和失误类
24、别,分别采用不同的防错模式,分别是:(1)有形Poka-Yoke防错;(2)有序Poka-Yoke防错;(3)编组和计数式Poka-Yoke防错;(4)信息加强Poka-Yoke防错。2023-1-2442Poka-Yoke的四种模式:1、有形Poka-Yoke防错:有形Poka-Yoke防错模式是针对产品、设备、工具和作业者的物质属性,采用的一种硬件防错模式。如,电饭煲中的感应开关即为一种有形Poka-Yoke防错模式。如果电饭煲中未加入水,加热开关就无法设定至加热位置,只有加水,加热开关方可打至加热位置。2023-1-2443Poka-Yoke的四种模式:2、有序Poka-Yoke防错:有
25、序Poka-Yoke防错模式是针对过程操作步骤,对其顺序进行监控或优先对易出错、易忘记的步骤进行作业,再对其他步骤进行作业的防错模式。零件1零件2零件3零件42023-1-2444第3步:确认缺陷产生工序的作业指导书;这些仪器有对与不对两种装法,果不其然,负责装配的那位员工,把16件仪器统统都装错了。简化是通过合并、削减等方法对作业流程进行简化,流程越简单、出现操作失误的概率越低。电缆/网线中不同颜色的线头即使长距离也不会接错。解决方案:将卡爪和安装孔设计为非对称的避免安装错误。参加试验的人最终的结果显而易见.信息型检测带有预防性质,虽然它在抽检时间上是与生产过程同步进行的,但通过信息型检测可
展开阅读全文