书签 分享 收藏 举报 版权申诉 / 34
上传文档赚钱

类型超快光学第24章阿秒脉冲解析课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4909831
  • 上传时间:2023-01-24
  • 格式:PPT
  • 页数:34
  • 大小:3.73MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《超快光学第24章阿秒脉冲解析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    光学 24 章阿秒 脉冲 解析 课件
    资源描述:

    1、Single-cycle and attosecond light pulsesBandwidth,bandwidth,bandwidthUV wavelengthPossible routes:Raman scattering High-harmonic generationMeasurement of attosecond pulsesSources:The physics of attosecond light pulses,Pierre Agostini and Louis F DiMauro Rep.Prog.Phys.67(2004)813.Chang Hee NAM and Ky

    2、ung Taec Kim Reinhard Kienberger1,M.Hentschel1,M.Drescher1,2,G.Reider1,Ch.Spielmann1,Ferenc Krausz11Institut fr Photonik,Technische Universitt Wien,AUSTRIA2Fakultt fr Physik,Universitt Bielefeld,GERMANYWhy try to make attosecond pulses?Bohr-orbit time in hydrogen:152 attosecondsH2 vibrational oscill

    3、ation period:7 fsMolecular vibrations can also be very fast.t=0t0Sub-fsX-ray pumpSub-fsX-ray probeX-Ray Pump/X-Ray Probe SpectroscopyX-ray Excite-Probe SpectroscopyWith sub-fs x-ray pulses,we could trace inner shell relaxation processes.BandwidthSo for a sub-fs pulse,Dn Dn 1015 Hz.This is a lot!Long

    4、 pulseShort pulseIrradiance vs.timeSpectrumtimetimefrequencyfrequencyThe uncertainty principle requires that Dt Dn 1.Single-cycle pulsesThe shortest possible pulse of a given wavelength is one cycle long.Such a pulse immediately evolves into a single-cycle pulse:Imagine a half-cycle pulse.Its electr

    5、ic field looks like this:Because this pulse field has nonzero area,it has an w w=0 componentwhich has infinite wavelength!And this wavelength diffracts away immediately:TimeElectric field0TimeElectric field02/0RzwAttosecond pulses are short-wavelength pulses.If you compress a single-cycle pulse of o

    6、ne wavelength,you necessarily reduce its wavelength!A single-cycle red pulse:Compressing a single-cycle red pulse:A single-cycle 800-nm pulse has a period of 2.7 fs.t(and z)To achieve a period of 1 fs requires a wavelength of 300 nm.An infinite train of identical pulses can be written:The Fourier tr

    7、ansform of an infinite train of pulses()III(/)(2EFTwww%where f(t)represents a single pulse and T is the time between pulses.The Convolution Theorem states that the Fourier Transform of a convolution is the product of the Fourier Transforms.So:E(t)=III(t/T)*f(t)t-3T-2T0T2T3T-TE(t)wT/2-4-2024F E(t)F f

    8、(t)A series of modes,and the shorter the pulse the broader the spectrum.Generating short pulses=Mode-lockingLocking vs.not locking the phases of the laser modes(frequencies)Random phasesLight bulbIntensity vs.timeUltrashort pulse!Locked phasesTimeTimeIntensity vs.timeMethods for generating many equa

    9、lly spaced modes with 1015 Hz bandwidthCascaded Raman scatteringHigh-harmonic generationBut do they lock the modes?FrequencyRaman scattering and attosecond pulsesS.E.Harris and A.V.Sokolov PRL 81,2894frequencyRaman processes can cascade many times,yielding a series of equally spaced modes!Input two

    10、frequencies nearly resonant with a Raman resonance.At high intensity,the process cascades many times.Input pulsesOutput pulse as input to a second processOutput pulse of second process as input to a third processOutput pulse of third process as input to a fourthprocessEtc.Cascaded Raman generationDw

    11、ba=2994 cm-1A.V.Sokolov et al.PRL 85,85 562This can be done with nanosecond laser pulses!A.V.Sokolov et al.PRL 85,562Experimental demonstration of cascaded Raman scattering-400MHz+100MHz+700MHz2994 cm-1Detuning from 2-photon resonance75,000 cm-1(2.3 x 1015 Hz)of bandwidth has been created!Numerical

    12、simulation of Raman scattering in D2Harris and Sokolov.PRL 81,2894z(cm)01.83.6Propagation distanceIs the light produced using cascaded Raman scattering an attosecond pulse?Unfortunately,no one has reliably measured the spectral phase of this light,so we dont know its pulse lengthAnd if you havent me

    13、asured it,you havent made it!As a footnote,they did a complex set of four-wave-mixing cross-correlations,which implied that it was a single cycle,but we cant be sure.High Harmonic Generation in a gasgratingdetectorLaser dump800 nm 1015 Hz).Spatial coherence.Reasonable stability.The physics seems to

    14、imply that the XUV pulse should be really shortMaybe HHG just naturally produces attosecond pulses without even tryingAre the high harmonics actually in phase?P.Antoine et al.,PRL 77,1234cutoffplateauMeasuring the relative phases of adjacent harmonics:The resulting intensity vs.time:Using a 100 fs i

    15、nput pulse,the answer is NO!The highest and most intense harmonics are generated by the shortest pulses.Measured XUV spectral intensity from neonM.Schnrer et al.,PRL 83,722(1999)Ch.Spielmann et al.,Science 278,661(1997)Z.Chang et al.,PRL 79,2967(1997)Wavelength(nm)Note the broader harmonics from the

    16、 7-fs pulse due to the spectrally broader excitation pulse.Theory says many-fs input pulses yield many-fs XUV pulses,but few-fs input pulses could yield attosecond XUV pulsesA 5-fs input pulse in theory yields an attosecond XUV pulse302520151050Time(fs)tIR=100 fsIR E-fieldHarmonic emissionIonization

    17、 tIR=25 fstIR=5 fsI.P.Christov,M.M.Murnane,and H.C.Kapteyn,PRL 78,1251,(1997)Theory predicts that few-cycle-driven XUV/HHG emission consists of attosecond pulses.Simulation3D code:N.Milosevic&T.Brabec,2001I.Christov et al.,PRL 78,1251(1997)C.Kann et al.,PRL 79,2971(1997)Isolated sub-femtosecond XUV

    18、pulse!Time(fs)-6-4-20246X-ray intensityEnergy(eV)869094t tx=530 asLaser electric field“Observation of attosecond light localization in HHG”N.A.Papadogiannis et al.PRL 83,4289MCPAl-SiDigital scopeTi:StArHHGAs with any long-sought milestone,false claims abound.These guys basically performed an interfe

    19、rometric autocorrelation measurement,but with HHG as the nonlinear process instead of SHG.“Observation of attosecond light localization in HHG”N.A.Papadogiannis,et al.PRL 83,4289Harmonic autocorrelationA false claimThese authors saw peaks,more indicative of the broad spectrum than a short pulse.They

    20、 also saw unphysical asymmetries,without question due to noise.Dont believe everything you read,even if its in a peer-reviewed scientific journal!Zeroth-order phase:the absolute phaseThe absolute phase is the same in both the time and frequency domains.An absolute phase of/2 will turn a cosine carri

    21、er wave into a sine.Its usually irrelevant,unless the pulse is only a cycle or so long.Different absolute phases for a single-cycle pulseNotice that the two four-cycle pulses look alike,but the three single-cycle pulses are all quite different.f(t)exp(i0)F(w)exp(i0)Different absolute phases for a fo

    22、ur-cycle pulse-505-505-10010-10010HHG and the absolute phase(carrier-offset phase)FewcyclepulseMulticyclepulseE(t)=E(t)cos(wLt)E(t)=E(t)sin(wLt)Input pulse instantaneous intensityt(fs)HHG is very sensitive to the peak intensity,which is higher for a 0-absolute phase(cos)than for 90-absolute phase(si

    23、n).Threshold for HHGTheory predicts much more intense XUV for a zero(or )absolute phase.A.Apolonski et al.PRL 85,740Laser electric fieldIntensity of the XUV harmonic radiationThe absolute phase varies!“Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synt

    24、hesis,”D.J.Jones,et al.,Science 288,635.Pulse field vs.timeThe intensity profile has a round-trip time of L/vg,while the carrier wave has a round-trip time of L/v.If these times differ,the absolute phase(also called the carrier-envelope offset phase)will vary from pulse to pulse.2/wL=TwL=mode spacin

    25、gT=pulse spacingVariable absolute phase in the frequency domainCarrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,D.J.Jones et al.Science 288,635The frequency of absolute-phase variation is related to d,the extra residual frequency.2/wL=TwLwn=nwL+

    26、d d=D/T()Ew%()E ttwwn=nwL+d d 0The nth laser mode:Proof that:0()()()exp()(2)exp(2).()exp()mE tf tf tTif tTif tmTimDDD0()()exp()exp()mEFim TimwwwD%0()exp()mFimTwwDA repetitive pulse train with drifting absolute phase:Its Fourier transform via the Shift Theorem:where D 2()0nnifEifwwwww%2/nLnnTTwwdDwhe

    27、re:0,1,2,n KProof(continued)0()()exp()mEFimTwwwD%If w =wn=(2n+D)/T:If w =(2n+D)/T+e wn:0022exp)exp2mmnnFimTinmTTDDD 1ReImQED0022exp)exp0mmnnFimTTTim TeeeDDD()Ew%()Ew%If a pulse has more than one octave,it has both f and 2 f for some frequency,f.Interfering them in a SHG crystal yields two contributi

    28、ons at 2 f:that from the original beam and the SH of f.Simply measuring the spectrum of the pulse plus it SH is performing spectral interferometry and yields a fringe phase:Apolonski et al.PRL 85 7400002Stabilizing the absolute phaseStabilizing the SH spectrum near 2 f stabilizes the abs phase.Chirp

    29、ed mirrorsTelescopeWedgesHow to measure an attosecond pulse?Attosecond autocorrelation is too difficult.Using the relatively narrowband 800-nm pump pulse as the gate yields an output electron energy width about half as broad.The 800-nm beam is easier to work with.Theres a wider choice of nonlinear e

    30、ffects.But the 800-nm pulse is a lot longer!Fortunately,femtosecond measurements using FROG have taught us that this isnt a problem.All attosecond-pulse methods are versions of XFROG.+10 eV-10 eV 0WEnergy shift of as electron wave-packetAs we vary the relative delay between the XUV pulse and the 800

    31、-nm field,the added energy of the emitted electron packet will vary.timeE-fieldTheres an angular shift,too,but its too small to measure.IR fieldF.Krausz and coworkers,Science,2008-300300Time(as)XUV IntensityTime domainPhoton energy(ev)40120Phase(rad)0XUV spec-trom-eterFrequency domainFROG measure-me

    32、nt of an atto-second pulseMeasure photoelectron spectra,rather than light spectra.MeasuredRetrievedDelay(fs)Delay(fs)-55-55Photoelectron energy(ev)Attosecond pulses:conclusionsThis is just the beginning of attosecond science.In 1980,the shortest pulses were picoseconds long.Femtosecond pulses were only a dream.Now,not much later,attosecond pulses are real.Who knows how much further well go,what well do with them,and what well learn?

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:超快光学第24章阿秒脉冲解析课件.ppt
    链接地址:https://www.163wenku.com/p-4909831.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库