第八章虚拟变量模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第八章虚拟变量模型课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八 虚拟 变量 模型 课件
- 资源描述:
-
1、计量经济学计量经济学理论理论方法方法EViewsEViews应用应用 郭存芝郭存芝 杜延军杜延军 李春吉李春吉 编著编著电子教案 本章将主要介绍经典单方程计量经济学模型中引入虚拟变量的问题。本章将主要介绍经典单方程计量经济学模型中引入虚拟变量的问题。第八章第八章 虚拟变量模型虚拟变量模型 在前面几章中,主要介绍了经典线性回归模型及其在若干基本假定在前面几章中,主要介绍了经典线性回归模型及其在若干基本假定下的估计问题,并分析了一个或多个假定不满足时所产生的后果及其可下的估计问题,并分析了一个或多个假定不满足时所产生的后果及其可能的改进措施。然而上述方法还不能解决经济生活中遇到的全部问题。能的改进
2、措施。然而上述方法还不能解决经济生活中遇到的全部问题。如何考察某一突发事件、性别、季节、受教育程度等对经济行为带如何考察某一突发事件、性别、季节、受教育程度等对经济行为带来的影响来的影响?例如:例如:第八章第八章 虚拟变量模型虚拟变量模型 学习目的学习目的 了解虚拟变量、虚拟变量模型的概念,掌握虚拟变量设置的了解虚拟变量、虚拟变量模型的概念,掌握虚拟变量设置的原则和引入模型的方法。原则和引入模型的方法。基本要求基本要求1)认识到虚拟变量是建立计量经济学模型经常会遇到的问题;认识到虚拟变量是建立计量经济学模型经常会遇到的问题;2)了解虚拟变量、虚拟变量模型的概念;了解虚拟变量、虚拟变量模型的概念
3、;3)掌握虚拟变量设置的原则、虚拟变量模型的建模方法及应用。掌握虚拟变量设置的原则、虚拟变量模型的建模方法及应用。虚拟变量虚拟变量虚拟变量模型虚拟变量模型第八章第八章 虚拟变量模型虚拟变量模型第一节第一节 虚拟变量虚拟变量虚拟变量的引入虚拟变量的引入虚拟变量的设置原则虚拟变量的设置原则一、虚拟变量一、虚拟变量为什么要引入为什么要引入“虚拟变量虚拟变量”?如商品需求量、价格、收入、产量等如商品需求量、价格、收入、产量等许多经济变量是可以定量度量的或者说是可以直接观测的许多经济变量是可以定量度量的或者说是可以直接观测的但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测但是也有一些影响经济
4、变量的因素无法定量度量或者说无法直接观测 如职业、性别对收入的影响,战争、自然灾害对如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节的影响,季节对某些产品对某些产品(如冷饮如冷饮)销售的影响等。销售的影响等。为了能够在模型中反映这些因素的影响,并提高模型的精度,需要将为了能够在模型中反映这些因素的影响,并提高模型的精度,需要将它们人为地它们人为地“量化量化”,这种,这种“量化量化”通常是通过引入通常是通过引入“虚拟变量虚拟变量”来完成的。来完成的。这种用两个相异数字来表示对被解释变量有重要影响而自身又这种用两个相异数字来表示对被解释变量有重要影响而自身又没有观测数值的一类变量,称为
5、没有观测数值的一类变量,称为虚拟变量虚拟变量(dummy variables)。虚拟变量也称为哑变量或定性变量。虚拟变量也称为哑变量或定性变量。虚拟变量的特点是:虚拟变量的特点是:1虚拟变量是对经济变化有重要影响的不可测变量。虚拟变量是对经济变化有重要影响的不可测变量。2虚拟变量是赋值变量,一般根据这些因素的属性类型,构造只取虚拟变量是赋值变量,一般根据这些因素的属性类型,构造只取“0”或或“1”的人工变量,通常称为虚拟变量,记为的人工变量,通常称为虚拟变量,记为D。这是为了便于计算而。这是为了便于计算而把定性因素这样数量化的,所以虚拟变量的数值只表示变量的性质而不表把定性因素这样数量化的,所
6、以虚拟变量的数值只表示变量的性质而不表示变量的数值。示变量的数值。基础类型和肯定类型取值为基础类型和肯定类型取值为1;一般地,在虚拟变量的设置中,一般地,在虚拟变量的设置中,比较类型和否定类型取值为比较类型和否定类型取值为0。例如:例如:1)表示性别的虚拟变量可取为)表示性别的虚拟变量可取为D1=1 男性男性 0 女性女性2)表示文化程度的虚拟变量可取为)表示文化程度的虚拟变量可取为D2=1 本科及以上学历本科及以上学历 0 本科以下学历本科以下学历3)表示地区的虚拟变量可取为)表示地区的虚拟变量可取为D3=1 城市城市 0 农村农村4)表示消费心理的虚拟变量可取为)表示消费心理的虚拟变量可取
7、为D4=1 喜欢某种商品喜欢某种商品 0 不喜欢某种商品不喜欢某种商品5)表示天气变化的虚拟变量可取为)表示天气变化的虚拟变量可取为D5=0 雨天雨天 1 晴天晴天二、虚拟变量模型二、虚拟变量模型同时含有一般解释变量与虚拟变量的模型称为同时含有一般解释变量与虚拟变量的模型称为虚拟变量模型虚拟变量模型。在模型中,虚拟变量可作为解释变量,也可作为被解释变量,但主要在模型中,虚拟变量可作为解释变量,也可作为被解释变量,但主要是用作是用作解释变量解释变量。一个以性别为虚拟变量来考察职工薪金的模型如下:一个以性别为虚拟变量来考察职工薪金的模型如下:(8-1)i012iiiYXD其中其中例如:例如:iY为
8、职工的薪金;为职工的薪金;iX为职工工龄;为职工工龄;iD=1代表男性代表男性iD=0 代表女性代表女性三、虚拟变量的引入三、虚拟变量的引入虚拟变量作为解释变量引入模型有两种基本方式:加法方式和乘法方式。虚拟变量作为解释变量引入模型有两种基本方式:加法方式和乘法方式。1.加法方式加法方式上述职工薪金模型(上述职工薪金模型(8-1)中性别虚拟变量的引入就采取了加法方式,)中性别虚拟变量的引入就采取了加法方式,女职工的平均薪金为:女职工的平均薪金为:01,0iiiiE Y X DX在该模型中,如果仍假定在该模型中,如果仍假定iE=0,则,则男职工的平均薪金为:男职工的平均薪金为:021,1iiii
9、E Y X DXi012iiiYXD从从几何意义几何意义上看上看(图图8-1),图图8-1 男女职工平均薪金示意图男女职工平均薪金示意图假定假定20,则两个函数有相同的斜率,但有不同的截距。则两个函数有相同的斜率,但有不同的截距。这意味着,男女职工平均薪金对工龄的这意味着,男女职工平均薪金对工龄的2。变化率是一样的,但两者的平均薪金水平相变化率是一样的,但两者的平均薪金水平相差差可以通过传统的回归检验,对可以通过传统的回归检验,对2的统计显著性进行检验,以判断男女的统计显著性进行检验,以判断男女职工的平均薪金水平是否有显著差异。职工的平均薪金水平是否有显著差异。例如:例如:在截面数据基础上,考
10、虑在截面数据基础上,考虑个人保健支出对个人收入和教育水平的回归个人保健支出对个人收入和教育水平的回归。教育水平考虑三个层次:高中以下,高中,大学及其以上教育水平考虑三个层次:高中以下,高中,大学及其以上D1=1 高中高中 0 其它其它D2=1 大学及其以上大学及其以上 0 其它其它这时需要引入两个虚拟变量:这时需要引入两个虚拟变量:模型可设定如下:模型可设定如下:(8-2)i012132iiiiYXDD高中以下:高中以下:E(Yi|Xi,D1i=0,D2i=0)=0+1Xi高中:高中:大学及其以上:大学及其以上:E(Yi|Xi,D1i=1,D2i=0)=(0+2)+1Xi E(Yi|Xi,D1
11、i=0,D2i=1)=(0+3)+1Xi在在()iE=0=0的初始假定下,容易得到高中以下、高中、大学及其以上的初始假定下,容易得到高中以下、高中、大学及其以上教育水平个人平均保健支出的函数:教育水平个人平均保健支出的函数:32000假定假定,且,且,则其几何意义如图,则其几何意义如图8-2所示。所示。图图8-2 不同教育程度人员保健支出示意图不同教育程度人员保健支出示意图还可将还可将多个虚拟变量多个虚拟变量引入模型中以考察多种引入模型中以考察多种“定性定性”因素的影响。因素的影响。例如:例如:在职工薪金模型(在职工薪金模型(8-1)的例子中,再引入学历的虚拟变量)的例子中,再引入学历的虚拟变
12、量i012iiiYXDD2=1 本科及以上学历本科及以上学历 0 本科以下学历本科以下学历则职工薪金的回归模型可设计如下:则职工薪金的回归模型可设计如下:(8-3)Yi=0+1Xi+2Di+3D2i+i于是,不同性别、不同学历职工的平均薪金分别由下面各式给出:于是,不同性别、不同学历职工的平均薪金分别由下面各式给出:女职工本科以下学历的平均薪金:女职工本科以下学历的平均薪金:男职工本科以下学历的平均薪金:男职工本科以下学历的平均薪金:女职工本科以上学历的平均薪金:女职工本科以上学历的平均薪金:男职工本科以上学历的平均薪金:男职工本科以上学历的平均薪金:E(Yi|Xi,D1i=0,D2i=0)=
13、0+1Xi E(Yi|Xi,D1i=1,D2i=0)=(0+2)+1Xi E(Yi|Xi,D1i=0,D2i=1)=(0+3)+1Xi E(Yi|Xi,D1i=1,D2i=1)=(0+2+3)+1Xi2.乘法方式乘法方式斜率的变化斜率的变化例如:例如:根据消费理论,消费水平根据消费理论,消费水平C主要取决于收入水平主要取决于收入水平X。但在一个较长的。但在一个较长的时期,人们的消费倾向会发生变化,尤其是在自然灾害、战争等反常年时期,人们的消费倾向会发生变化,尤其是在自然灾害、战争等反常年份,消费倾向往往出现变化。这种消费倾向的变化可通过在收入的系数份,消费倾向往往出现变化。这种消费倾向的变化可
14、通过在收入的系数中引入虚拟变量来考察。中引入虚拟变量来考察。设设 Dt=1 正常年份正常年份 0 反常年份反常年份则消费模型可建立如下:则消费模型可建立如下:012tttttCXD X(8-4)这里,虚拟变量这里,虚拟变量 Dt 以与以与 Xt 相乘的方式引入了模型中,从而可用来相乘的方式引入了模型中,从而可用来考察消费倾向的变化。考察消费倾向的变化。在在E(t)=0的假定下,上述模型所表示的函数可化为的假定下,上述模型所表示的函数可化为:正常年份:正常年份:012(,1)()ttttE C X DX反常年份:反常年份:01(,0)ttttE C X DX图图8-3 不同年份消费倾向示意图不同
15、年份消费倾向示意图假定假定20 0,则其几何图形如图则其几何图形如图8-3所示。所示。如果在模型中如果在模型中同时使用加法和乘法两种方式引入虚拟变量同时使用加法和乘法两种方式引入虚拟变量,则回归线的截距和斜率都会改变。则回归线的截距和斜率都会改变。例如:例如:对于改革开放前后储蓄对于改革开放前后储蓄-收入模型,可设定为收入模型,可设定为(8-5)0112()ttttttYDXD X其中,其中,Y为储蓄,为储蓄,X为收入,为收入,Dt为虚拟变量为虚拟变量 Dt=1 改革开放以后改革开放以后 0 改革开放以前改革开放以前显然在式(显然在式(8-5)中,同时使用加法和乘法两种方式引入了虚拟变量。)中
16、,同时使用加法和乘法两种方式引入了虚拟变量。在在E(t)=0的假定下,上述模型所表示的函数可化为的假定下,上述模型所表示的函数可化为:改革开放以前:改革开放以前:E(Yt|Xt,Dt=0)=0+1Xt改革开放以后:改革开放以后:则其几何图形如图则其几何图形如图8-48-4所示。所示。E(Yt|Xt,Dt=1)=(0+1)+(1 2)Xt12假定假定0 0且且0,改革开放以前改革开放以前改革开放以后改革开放以后X XY图图8-4 改革开放前后储蓄函数示意图改革开放前后储蓄函数示意图3 3临界指标的虚拟变量的引入临界指标的虚拟变量的引入在经济发生转折时,可通过建立临界指标的虚拟变量模型来反映。在经
17、济发生转折时,可通过建立临界指标的虚拟变量模型来反映。例如:例如:进口消费品数量进口消费品数量Y主要取决于国民收入主要取决于国民收入X的多少,中国在改革开放前后,的多少,中国在改革开放前后,Y对对X的回归关系明显不同。的回归关系明显不同。这时,可以这时,可以t*=1979为转折期,以为转折期,以1979年的国民收入年的国民收入Xt*为临界值,为临界值,设如下虚拟变量:设如下虚拟变量:1 0Dt=tt*tt*则进口消费品的回归模型可建立如下:则进口消费品的回归模型可建立如下:*012()ttttttYXXXD (8-6)如果用如果用OLS法得到该模型的回归方程为法得到该模型的回归方程为*012(
18、)tttttYXXXD(8-7)则两个时期进口消费品函数分别为则两个时期进口消费品函数分别为当当tt*=1979时时01ttYX当当tt*=1979时时*0212()()tttYXX几何图形如图几何图形如图8-5所示所示 图图8-5 转折期回归示意图转折期回归示意图4数值变量作为虚拟变量引入数值变量作为虚拟变量引入 有些变量虽然是数量变量,即可以获得实际观测值,但在某些特定情有些变量虽然是数量变量,即可以获得实际观测值,但在某些特定情况下把它选取为虚拟变量则是方便的,以虚变量引入计量经济学模型更加况下把它选取为虚拟变量则是方便的,以虚变量引入计量经济学模型更加合理。合理。譬如年龄因素虽然可以用
19、数字计量,但如果将年龄作为资料分组的特譬如年龄因素虽然可以用数字计量,但如果将年龄作为资料分组的特征,则可将年龄选作虚拟变量。征,则可将年龄选作虚拟变量。例如:例如:家庭教育经费支出不仅取决于其收入,而且与年龄因素有关。家庭教育经费支出不仅取决于其收入,而且与年龄因素有关。按年龄划分为三个年龄组:按年龄划分为三个年龄组:618岁年龄组(中小学教育);岁年龄组(中小学教育);1922岁岁年龄组(大学教育);其它年龄组。于是设定虚拟变量年龄组(大学教育);其它年龄组。于是设定虚拟变量D1=1 6-18岁年龄组岁年龄组 0 其它其它D2=1 19-22年龄组年龄组 0 其它其它则家庭教育经费支出模型
20、可设定为则家庭教育经费支出模型可设定为(8-8)012132iiiiiYXDD 其中,其中,Yi是第是第i个家庭的教育经费支出;个家庭的教育经费支出;Xi是第是第i个家庭的收人;个家庭的收人;虚拟变量虚拟变量D1i、D2i分别表示第分别表示第i家庭中是否有家庭中是否有618岁和岁和1922岁的成员。岁的成员。5.5.虚拟变量交互效应分析虚拟变量交互效应分析 当分析解释变量对变量的影响时,大多数情形只是分析了解释变量当分析解释变量对变量的影响时,大多数情形只是分析了解释变量自身变动对被解释变量的影响作用,而没有深入分析解释变量间的相互自身变动对被解释变量的影响作用,而没有深入分析解释变量间的相互
21、作用对被解释变量影响。作用对被解释变量影响。前面讨论的分析两个定性变量对被解释变量影响的虚拟变量模型中,前面讨论的分析两个定性变量对被解释变量影响的虚拟变量模型中,暗含着一个假定:暗含着一个假定:两个定性变量是分别独立地影响被解释变量的两个定性变量是分别独立地影响被解释变量的 但是在实际经济活动中,两个定性变量对被解释变量的影响可能存在但是在实际经济活动中,两个定性变量对被解释变量的影响可能存在一定的交互作用,即一个解释变量的边际效应有时可能要依赖于另一个解一定的交互作用,即一个解释变量的边际效应有时可能要依赖于另一个解释变量。释变量。为描述这种交互作用,可以把两个虚拟变量的乘积以加法形式引入
22、模型。为描述这种交互作用,可以把两个虚拟变量的乘积以加法形式引入模型。考虑下列模型考虑下列模型Yi=0+1D1i+2D2i+Xi+i (8-9)其中,其中,Yi为农副产品生产总收益,为农副产品生产总收益,Xi为农副产品生产投入,为农副产品生产投入,D1i为油菜籽生为油菜籽生产虚拟变量,产虚拟变量,D2i为养蜂生产虚拟变量。这里为养蜂生产虚拟变量。这里D1i=1 发展油菜籽生产发展油菜籽生产 0 其它其它D2i=1 发展养蜂生产发展养蜂生产 0 其它其它例如:例如:显然,显然,(8-9)式描述了是否发展油菜籽生产与是否发展养蜂生产的差异对农式描述了是否发展油菜籽生产与是否发展养蜂生产的差异对农副
23、产品总收益的影响。副产品总收益的影响。虚拟解释变量虚拟解释变量D1i和和D2i是以加法形式引入的,那么暗含着是以加法形式引入的,那么暗含着假定假定:油菜籽生产和养蜂生产是分别独立地影响农副产品生产总收益。油菜籽生产和养蜂生产是分别独立地影响农副产品生产总收益。但是,在发展油菜籽生产时,同时也发展养蜂生产,所取得的农副但是,在发展油菜籽生产时,同时也发展养蜂生产,所取得的农副产品生产总收益可能会高于不发展养蜂生产的情况。即在是否发展油菜产品生产总收益可能会高于不发展养蜂生产的情况。即在是否发展油菜籽生产与养蜂生产的虚拟变量籽生产与养蜂生产的虚拟变量D1i和和D2i之间,很可能存在着一定的交互之间
24、,很可能存在着一定的交互作用,且这种交互影响对被解释变量作用,且这种交互影响对被解释变量农副产品生产总收益会有影响。农副产品生产总收益会有影响。为描述虚拟变量交互作用对被解释变量的效应,在为描述虚拟变量交互作用对被解释变量的效应,在(8-9)式中以式中以加法形式加法形式引入引入两个虚拟解释变量的乘积,即两个虚拟解释变量的乘积,即Yi=0+1D1i+2D2i+3(D1iD2i)+Xi+i (8-10)(1)基础类型:不发展油菜籽生产,也不发展养蜂生产时农副产品生产平均总收益)基础类型:不发展油菜籽生产,也不发展养蜂生产时农副产品生产平均总收益E(Yi|Xi,D1=0,D2=0)=0+Xi (8-
25、11)(2)比较类型:同时发展油菜籽生产和养蜂生产时,农副产品生产平均总收益)比较类型:同时发展油菜籽生产和养蜂生产时,农副产品生产平均总收益E(Yi|Xi,D1=1,D2=1)=0+1+2+3+Xi (8-12)1为是否发展油菜籽生产对农副产品生产总收益的截距差异系数;为是否发展油菜籽生产对农副产品生产总收益的截距差异系数;2为是否发展养蜂生产对农副产品生产总收益的截距差异系数;为是否发展养蜂生产对农副产品生产总收益的截距差异系数;3为同时发展油菜籽生产和养蜂生产时对农副产品生产总收益的交互效应系数。为同时发展油菜籽生产和养蜂生产时对农副产品生产总收益的交互效应系数。0 3组成截距水平。组成
展开阅读全文