书签 分享 收藏 举报 版权申诉 / 20
上传文档赚钱

类型第一曲面积分-课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4907242
  • 上传时间:2023-01-24
  • 格式:PPT
  • 页数:20
  • 大小:521KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第一曲面积分-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第一 曲面 积分 课件
    资源描述:

    1、程序设计 网络课件 教学设计 多媒体课件 PPT文档程序设计 网络课件 教学设计 多媒体课件 PPT文档上一页上一页 下一页下一页 主主 页页教学目的教学目的:掌握第一型曲面积分的定义和计算:掌握第一型曲面积分的定义和计算公式公式 教学内容教学内容:第一型曲面积分的定义和计算公:第一型曲面积分的定义和计算公式式(1)基本要求基本要求:掌握第一型曲面积分的定义和用:掌握第一型曲面积分的定义和用显式方程表示的曲面的第一型曲面积分计算公显式方程表示的曲面的第一型曲面积分计算公式式(2)较高要求较高要求:掌握用隐式方程或参量表示的曲:掌握用隐式方程或参量表示的曲面的第一型曲面积分计算公式面的第一型曲面

    2、积分计算公式上一页上一页 下一页下一页 主主 页页第一型曲面积分的概念第一型曲面积分的概念第一型曲面积分的计算第一型曲面积分的计算上一页上一页 下一页下一页 主主 页页设曲面形物体设曲面形物体 S 具有连续的面密度函数具有连续的面密度函数),(zyx 类似第一型曲线积分、二重积分、三重积分的思想类似第一型曲线积分、二重积分、三重积分的思想,niiiiiTSM10|),(lim 求其质量求其质量 M.采用采用“分割、近似代替、求和、取极限分割、近似代替、求和、取极限”的方法,可得的方法,可得一、一、第一型曲面积分的概念第一型曲面积分的概念上一页上一页 下一页下一页 主主 页页定义定义1 设设 S

    3、 为可求面积的曲面为可求面积的曲面,),(zyxf为定义在为定义在 S 上的函数上的函数.对曲面对曲面 S 作分割作分割 T,将,将 S 分成分成 n 个小曲面块个小曲面块 Si(i=1,2,.,n),Si 的面积记为的面积记为iS,max|1的的直直径径iniST 在在 Si 任取一点任取一点),(iii 若极限若极限 niiiiiTSf10|),(lim 存在,则称此极限为存在,则称此极限为 f(x,y,z)在在 S 上的第一型上的第一型曲面积分,记作曲面积分,记作 Sszyxfd),(上一页上一页 下一页下一页 主主 页页 SSzyxMd),(于是于是,曲面形物体曲面形物体 S 的质量为

    4、的质量为第一型曲面积分与第一型曲线积分、重积分的性质第一型曲面积分与第一型曲线积分、重积分的性质类似,例如类似,例如.d的的面面积积SSS 上一页上一页 下一页下一页 主主 页页定理定理22.1 设有光滑曲面设有光滑曲面 xyDyxyxzzS ),(),(:f(x,y,z)在在 S 上连续上连续,xyDyxf),(SSzyxfd),(),(yxzyxyxzyxzyxdd),(),(122 则则二、二、第一型曲面积分的计算第一型曲面积分的计算xyzOSxyD上一页上一页 下一页下一页 主主 页页证明证明:由定义知 Szyxfd),(kkkkSf),(nk 10limkSyxyxzyxzyxkyx

    5、dd),(),(1)(22yxkkkykkxzz)(),(),(122而上一页上一页 下一页下一页 主主 页页0limnk 1yxkkkykkxzz)(),(),(1220limnk 1yxkkkykkxzz)(),(),(122yxyxzyxzyxfyxDyxdd),(),(1),(22),(yxz),(,(kkkkzf),(,(kkkkzfSzyxfd),(光滑)上一页上一页 下一页下一页 主主 页页说明说明:zyDzyzyxx ),(),(zxDzxzxyy ),(),(则有公式:则有公式:1)如果曲面方程为如果曲面方程为 yzDzyf),(SSzyxfd),(),(zyxzyzyxzy

    6、xzydd),(),(122 如果曲面方程为如果曲面方程为则有公式:则有公式:xzDzxf),(SSzyxfd),(),(zxyzxzxyzxyzxdd),(),(122 上一页上一页 下一页下一页 主主 页页2)若曲面为参数方程若曲面为参数方程,只要求出在参数意义下只要求出在参数意义下dS 的表达式的表达式,也可将对面积的曲面积分转化为对参数的也可将对面积的曲面积分转化为对参数的二重积分二重积分.上一页上一页 下一页下一页 主主 页页yxD例例1.计算曲面积分计算曲面积分,d SzS其中其中S是球面是球面 222zyx 被平面被平面)0(ahhz 截出的顶部截出的顶部.解解yxDyxyxaz

    7、S ),(,:2222222:hayxDyx 221yxzz 222yxaa SzSd 20da0)ln(2122222haraa haaln2 yxDyxayxa222dd 22022dhararr2a oxzySha上一页上一页 下一页下一页 主主 页页xyD例例 计算曲面积分计算曲面积分,d)(22 SSyx其中其中 S 为立体为立体122 zyx的边界曲面的边界曲面.1 解解设设1,1:221 yxzS1:222 yxzS 1d)(22SSyx 10220ddrrr 2412 1:22 yxDxy xyDyxyxdd001)(22上一页上一页 下一页下一页 主主 页页 2d)(22SS

    8、yx 10220dd2rrr 22 Dyxyxyyxxyxdd1)(22222222 Dyxyxdd2)(22)21(2222d)(22 SSyx所以所以上一页上一页 下一页下一页 主主 页页例例 计算计算,d)(SSzyx其中其中 S 为右半球面为右半球面0,1222 yzyx例例 计算计算,d2 SSy其中其中 S 为为 HzRyx 0,222上一页上一页 下一页下一页 主主 页页例例.求半径为求半径为R 的均匀半球壳的均匀半球壳 的重心的重心.解解:设 的方程为 yxDyxyxRz),(,222利用对称性可知重心的坐标,0 yx而 z 223RRR用球坐标cosRz ddsind2RS

    9、SdSzd20032dcossindR2002dsindR上一页上一页 下一页下一页 主主 页页例例.计算),(dRzSI.:2222Rzyx解解:取球面坐标系,则,cos:Rz I0cos)cosd(2RRRRRRln2ddsind2RS 02dcossinRR20d上一页上一页 下一页下一页 主主 页页zzd例例.计算,d222zyxSI其中 是介于平面 之间的圆柱面.222Ryx分析分析:若将曲面分为前后(或左右)zRSd2d则HzRzRI022d2RHarctan2Hzz,0oHxyz解解:取曲面面积元素两片,则计算较繁.上一页上一页 下一页下一页 主主 页页内容小结内容小结1.定义定义:2.计算计算:设设则则 niiiiiTSSfszyxf10|),(limd),(xyDyxyxzzS ),(),(:xyDyxf),(SSzyxfd),(),(yxzyxyxzyxzyxdd),(),(122

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第一曲面积分-课件.ppt
    链接地址:https://www.163wenku.com/p-4907242.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库