高中数学(人教B版)教材《函数的奇偶性》教学课件1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学(人教B版)教材《函数的奇偶性》教学课件1.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的奇偶性 高中数学 人教 教材 函数 奇偶性 教学 课件 下载 _其他版本_数学_高中
- 资源描述:
-
1、高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)文字内容文字内容高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)1 2 3 4 5 1 2 3 4 5 -5-4 -3-2 -1-5-4 -3-2 -1
2、xyo8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 9 9 征吗?函数图象有什么共同特个的图象,你能发现这两和观察函数xxgxxf)()(21 2 3 4 5 1 2 3 4 5 -5-4 -3-2 -1-5-4 -3-2 -1xyo8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 9 9 函数图象关于函数图象关于y y轴对称轴对称探究新知探究新知高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1
3、1(公开课课件)(公开课课件)探究新知探究新知的性质特征:探究一:2)(xxf=探究探究1 1:结合函数解析式,从:结合函数解析式,从“数数”量关系上观量关系上观察有什么样的特征?察有什么样的特征?-3-3-2-2-1-1 1 1 2 2 3 3 x)(xf1 11 14 44 49 99 9从这个表格中,大家发现了什么规律呢?从这个表格中,大家发现了什么规律呢?当自变量取当自变量取一对相反数一对相反数时,相应的时,相应的函数值是函数值是相等的相等的。高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)高中数学(人教高中数
4、学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)1 2 3 4 5 1 2 3 4 5 -5-4 -3-2 -1-5-4 -3-2 -1xyo8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1)1()1-(ff=)2()-2(ff=)3()-3(ff=猜想:猜想:都有,Rx)()-(xfxf=9 9 的性质特征:探究一:2)(xxf探究探究2 2:结合图象,从:结合图象,从“形形”上观察上观察探究新知探究新知高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课
5、件)高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)尝试总结偶函数定义:尝试总结偶函数定义:设函数的定义域为设函数的定义域为 ,如果,如果 ,都,都有有 ,那么函数,那么函数 就叫做偶函数就叫做偶函数.IIx)()-(xfxf=)(xf快速反应快速反应1)(+=xxf是偶函数吗?是偶函数吗?-5-4 -3-2 -1-5-4 -3-2 -1xyo7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 1 2 3 4 5 )22-,x探究新知探究新知-5-4 -3-2 -1-5-4 -3-2 -1xyo
6、7 7 6 6 5 5 4 4 3 3 2 2 1 1 1 2 3 4 5 1 2 3 4 5 高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)深研深研偶函数定义偶函数定义:(1)(1)若函数是偶函数,若函数是偶函数,都要有意义,即都要有意义,即 都要都要在定义域内,因此在定义域内,因此定义域关于原点对称定义域关于原点对称 偶函数定义:偶函数定义:一般的,设函数的定义域为一般的,设函数的定义域为
7、,如果,如果 ,都都有有 ,且,且 ,那么函数,那么函数 就叫做偶函数就叫做偶函数.IIxIx-)()-(xfxf=)(xf)-()(xfxf与xx-,xy1 12 23 34 4-1-1-2-2-3-3-4-4(2)(2)任意性。任意性。探究新知探究新知高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)-30 xy123-1-2-1123-2-30 xy123-1-2-1123-2-3?图象有什么
8、样的特征吗个函数的图象,你能发现这两和观察函数xxgxxf1)()(=函数图象关于原点对称函数图象关于原点对称奇函数奇函数探究新知探究新知高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)高中数学(人教高中数学(人教B B版)教材版)教材函数的奇偶性函数的奇偶性演示课件演示课件1 1(公开课课件)(公开课课件)探究新知探究新知的性质特征:探究二:xxf)(请大家结合该函数解析式,完成下面表格。请大家结合该函数解析式,完成下面表格。并思考这样一个问题:并思考这样一个问题:当自变量取一对相反数当自变量取一对相反数时,相应的函
展开阅读全文