概率的意义-课件-人教版.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率的意义-课件-人教版.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 意义 课件 人教版
- 资源描述:
-
1、 概率论的产生和发展概率论的产生和发展 概率论产生于十七世纪,本来是由保概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论问题者的请求,却是数学家们思考概率论问题的源泉。的源泉。传说早在传说早在1654年,有一个赌徒梅累向年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了当时的数学家帕斯卡提出一个使他苦恼了很久的问题:很久的问题:“两个赌徒相约赌若干局,两个赌徒相约赌若干局,谁先赢谁先赢 3局就算赢,全部赌本就归谁。但局就算赢,全部赌本就归谁。但是当其中一个人赢了是当其中一个人赢了 2局,另一个人赢了局
2、,另一个人赢了1局的时候,由于某种原因局的时候,由于某种原因,赌博终止了。问:赌博终止了。问:赌本应该如何分法才合理?赌本应该如何分法才合理?”帕斯卡是帕斯卡是17世纪著名的数学家,但世纪著名的数学家,但这个问题却让他苦苦思索了三年,三年后,这个问题却让他苦苦思索了三年,三年后,也就是也就是1657年,荷兰著名的数学家惠更年,荷兰著名的数学家惠更斯企图自己解决这一问题,结果写成了斯企图自己解决这一问题,结果写成了论赌博中的计算一书,这就是概率论论赌博中的计算一书,这就是概率论最早的一部著作。最早的一部著作。近几十年来,随着科技的蓬勃发近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工
3、农业展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。都是以概率论作为基础的。指出下列事件中,哪些是不可能事件?哪指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?些是必然事件?哪些是随机事件?(2)手电筒的电池没电)手电筒的电池没电,灯泡发亮灯泡发亮.(5)当)当 x 是实数时,是实数时,x 0;(6)一个袋内装有形状大小相同的一个白球)一个袋内装有形状大小相同的一个白球和一个黑球,从中任意摸出和一个黑球,从中任意摸出1
4、个球则为白球个球则为白球(3)在标准大气压下,水在温度)在标准大气压下,水在温度 时沸腾;时沸腾;c90(4)直线)直线 过定点过定点 ;1xky0,1(1)某地)某地1月月1日刮西北风;日刮西北风;历史上曾有人做过抛掷硬币的大量重复历史上曾有人做过抛掷硬币的大量重复试验,结果如下表试验,结果如下表:nmnm正面次数正面次数 (m为频数为频数)抛掷次数抛掷次数 频率(频率()106120480.5181204840400.50696019120000.50161201224000050051498436124300000.4996720880.5011 当抛掷硬币的次数很多时,出现当抛掷硬币的
5、次数很多时,出现正面的频率值是稳定的,接近于常数正面的频率值是稳定的,接近于常数0.5,在它附近摆动,在它附近摆动 很多很多 稳定稳定常数常数 随机事件在一次试验中是否随机事件在一次试验中是否发生虽然不能事先确定,但是在发生虽然不能事先确定,但是在大量重复大量重复试验的情况下,它的发试验的情况下,它的发生呈现出一定的生呈现出一定的规律性规律性出现的出现的频率值接近于常数频率值接近于常数.某批乒乓球产品质量检查结果表:某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率当抽查的球数很多时,抽到优等品的频率 接近于常数接近于常数0.95,在它附近摆动。,在它附近摆动。nm0.9510
6、.9540.940.970.920.9优等品频率优等品频率200010005002001005019029544701949245优等品数优等品数nmnm抽取球数抽取球数 很多很多常数常数某种油菜籽在相同条件下的发芽试验结果表:某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽当试验的油菜籽的粒数很多时,油菜籽发芽的频率的频率 接近于常数接近于常数0.9,在它附近摆动。,在它附近摆动。nm很多很多 常数常数事件事件 的概率的定义的概率的定义:A 一般地,在一般地,在大量重复大量重复进行同一试进行同一试验时,事件验时,事件 发生的频率发生的频率 (n n为实验为实验的
7、次数的次数,m m是事件发生的频数是事件发生的频数)总是接总是接近于某个近于某个常数常数,在它附近摆动,这时,在它附近摆动,这时就把这个常数叫做事件就把这个常数叫做事件 的的概率概率,记,记做做 pAPnmAA由定义可知由定义可知:(1)求一个事件的概率的基本方法是通)求一个事件的概率的基本方法是通过大量的重复试验;过大量的重复试验;(3)概率是频率的)概率是频率的稳定值稳定值,而频率是概,而频率是概率的率的近似值近似值;(4)概率反映了随机事件发生的)概率反映了随机事件发生的可能性可能性的大小;的大小;(5)必然事件的概率为)必然事件的概率为1,不可能事件的,不可能事件的概率为概率为0因此因
8、此 10AP (2)只有当频率在某个常数附近摆动时,)只有当频率在某个常数附近摆动时,这个常数才叫做事件这个常数才叫做事件A 的概率;的概率;2.必然事件的概率为必然事件的概率为_,不可能事件,不可能事件的概率为的概率为_,不确定事件的概率范围,不确定事件的概率范围是是_1.任意抛掷一枚均匀的骰子任意抛掷一枚均匀的骰子,骰子停止转动骰子停止转动后后,朝上的点数朝上的点数 可能可能,有哪些可有哪些可能能 .3.已知全班同学他们有的步行,有的骑车,已知全班同学他们有的步行,有的骑车,还有的乘车上学,根据已知信息完成下表还有的乘车上学,根据已知信息完成下表 上学方式上学方式步行步行骑车骑车乘车乘车“
9、正正”字法记字法记录录正正正正正正 频数频数 9 频率频率 40%4.表中是一个机器人做表中是一个机器人做9999次次“抛硬币抛硬币”游戏时记录下的出现正面的频数和频率游戏时记录下的出现正面的频数和频率 抛掷结果抛掷结果5次次50次次300次次800次次3200次次6000次次9999次次出现正面出现正面的频数的频数131135408158029805006出现正面出现正面的频率的频率20%62%45%51%494%497%501%(1)由这张频数和频率表可知,机器人抛掷完由这张频数和频率表可知,机器人抛掷完5次次时,得到时,得到1次正面,正面出现的频率是次正面,正面出现的频率是20%,那,那
10、么,也就是说机器人抛掷完么,也就是说机器人抛掷完5次时,得到次时,得到_次反面,反面出现的频率是次反面,反面出现的频率是_480%(2)由这张频数和频率表可知,机器人抛)由这张频数和频率表可知,机器人抛掷完掷完9999次时,得到次时,得到_次正面,正面出次正面,正面出现的频率是现的频率是_那么,也就是说机器人那么,也就是说机器人抛掷完抛掷完9999次时,得到次时,得到_次反面,反次反面,反面出现的频率是面出现的频率是_500650.1%499449.9%5.给出以下结论,错误的有()给出以下结论,错误的有()如果一件事发生的机会只有十万分之一,如果一件事发生的机会只有十万分之一,那么它就不可能
展开阅读全文