蒙特卡洛方法-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《蒙特卡洛方法-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蒙特卡洛 方法 课件
- 资源描述:
-
1、第六讲 蒙特卡洛方法计算机模拟方法分类(1)(1)蒙特卡洛(Monte Carlo)(Monte Carlo)方法,又称随机模拟方法或统计试验方法。它是通过一个合适的概率模型不断产生随机数序列来模拟过程。自然界中有的过程本身就是随机的过程,物理现象中如粒子的衰变过程、粒子在介质中的输运过程.等。当然蒙特卡洛方法也可以借助慨率模型来解决不直接具有随机性的确定性问题。(2)(2)确定性模拟方法。它是通过数值求解一个个的粒子运动方程来模拟整个系统的行为。如分子动力学(Molecular DynamicsMolecular Dynamics)方法以及原胞自动机方法等等。Why Monte Carlo(
2、MC)?MC方法的起源 起源于思想起源于von Neumann(冯.诺依曼)等人在研究原子弹时对裂变材料的中子扩散问题的探讨。目前,已经广泛的应用于社会科学,材料,物理,系统工程,科学管理,生物遗传等领域。可以说,有随机工程事件的领域,就可以应用Monte Carlo模拟。MC的基本思想 直接蒙特卡洛模拟方法。求解问题本身就具有概率和统计性的情况,该方法是按照实际问题所遵循的概率统计规律,用计算机进行直接的抽样试验,然后计算其感兴趣的统计参数(计算机实验)。间接蒙特卡洛模拟方法。人为地构造出一个合适的概率模型,依照该模型进行大量的统计实验,使它的某些统计参量正好是待求问题的解。例:布冯(Buf
3、fon)投针实验 在平滑桌面上划一组相距为s的平行线,向此桌面随意地投掷长度l=s的细针,那末从针与平行线相交的概率就可以得到的数值。s针与线相交概率针与线相交概率N次投针,次投针,M次相交,当次相交,当N足够大时:足够大时:NM2求求Pi转化为求一随机过程的参数。转化为求一随机过程的参数。一些人进行了实验,其结果列于下表:实验者年份投计次数的实验值沃尔弗(Wolf)185050003.1596斯密思(Smith)185532043.1553福克斯(Fox)189411203.1419拉查里尼(Lazzarini)190134083.1415929例:投点试验shothitsquarecirc
4、lettSS=3.14173精度不高!精度不高!例:求解定积分 定积分计算 随机向正方形内掷点,总掷点N,落于曲线下方的为M,N足够大时,I=M/NMC思想总结 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等于随机事件出现的概率或随机变量的数学期望值。然后进行模拟实验,即重复多次地模拟随机事件A或随机变量X。最后对随机实验结果进行统计平均,求出A出现的频数或X的平均值作为问题的近似解。(间接MC)MC方法概述 为了得到具有一定精确度的近似解,所需随机试验的次数是很多的,通过人工方法作大量的试验相当困难,甚至是不可能的。因此
5、,蒙特卡罗方法的基本思想虽然早已被人们提出,却很少被使用。本世纪四十年代以来,由于电子计算机的出现,使得人们可以通过电子计算机来模拟随机试验过程,把巨大数目的随机试验交由计算机完成,使得蒙特卡罗方法得以广泛地应用,在现代化的科学技术中发挥应有的作用。MC方法随机理论的基础MC方法的随机理论基础g(u)均匀分布MC方法随机理论的基础 大数法则 该定理指出,如果随机变量序列X1,X2,XN独立同分布,且具有有限非零的方差2,即 f(X)是X的分布密度函数。则dtexXEXNPxxtNN2/221)(limdxxfXEx)()(022中心极限定理平均值 当N充分大时,有如下的近似式 其中称为置信度,
6、1称为置信水平。这表明,不等式 近似地以概率 1成立,且误差收敛速度的阶为 。通常,蒙特卡罗方法的误差定义为 上式中 与置信度是一一对应的,根据问题的要求确定出置信水平后,查标准正态分布表,就可以确定出 。122)(02/2dteNXEXPtNNXEXN)()(2/1NON 下面给出几个常用的与的数值:关于蒙特卡罗方法的误差需说明两点:第一,蒙特卡罗方法的误差为概率误差,这与其他数值计算方法是有区别的。第二,误差中的均方差是未知的,必须使用其估计值 来代替,在计算所求量的同时,可计算出 。0.50.050.003 0.67451.9632112)1(1NiiNiiXNXNMC方法随机理论的基础
7、 中心极限定理告诉我们,蒙特卡洛方法的误差与随机数的均方差和抽样模拟次数n有关。为了减小误差,就应当选取最优的随机变量,使其方差最小。在方差固定时,增加模拟次数可以有效地减小误差。如试验次数增加100倍,精度提高10倍。当然这样做就增加了计算的机时,提高了费用。所以在考虑蒙特卡洛方法的精确度时,不能只是简单地减少方差和增加模拟次数,还要同时兼顾计算费用,即机时耗费。通常以方差和费用的乘积作为衡量方法优劣的标准。误差控制优点能够比较逼真地描述具有随机性质的事物的特点及物理实验过程。受几何条件限制小。收敛速度与问题的维数无关。具有同时计算多个方案与多个未知量的能力。误差容易确定。程序结构简单,易于
8、实现。缺点收敛速度慢。误差具有概率性。在粒子输运问题中,计算结果与系统大小有关。从这个意义上讲,蒙特卡罗方法可以部分代替物理实验,甚至可以得到物理实验难以得到的结果。用蒙特卡罗方法解决实际问题,可以直接从实际问题本身出发,而不从方程或数学表达式出发。它有直观、形象的特点。如:求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。在计算s维空间中的任一区域Ds上的积分 时,无论区域Ds的形状多么特殊,只要能给出描述Ds的几何特征的条件,就可以从Ds中均匀产生N个点 ,得到积分的近似值。其中Ds为区域Ds的体积。这是数值方法难以作到的。另外,在具有随机性质的问题中,如考虑的系
展开阅读全文