超声法检测混凝土缺陷经典培训教程课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《超声法检测混凝土缺陷经典培训教程课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超声 检测 混凝土 缺陷 经典 培训 教程 课件
- 资源描述:
-
1、一 混凝土无损检测概述v混凝土无损检测技术是以电子学、物理学、计算机技术为基础的测试仪器,直接在材料试体或结构物上,非破损地测量与材料物理、力学、结构质量有关的物理量,藉材料学、应用力学、数理统计和信息分析处理等方法,确定和评价材料和结构的弹性、强度、均匀性与密实度等的一种新兴的测试方法。一 混凝土无损检测概述v结构混凝土无损检测技术工程应用,主要有结构混凝土的强度、缺陷和损伤的诊断测试,而钢筋的位置、直径和保护层厚度,以及钢结构焊缝质量检测也得到比较广泛的应用,随着新技术的开发,结构水渗漏、气密性和保温性能、钢筋腐蚀程度的检测也日益得到重视。v无损检测技术的应用,已遍及建筑、交通、水利、电力
2、、地矿、铁道等系统的建设工程质量检测与评估,正如国际上权威人士早就预言的“混凝土工程应用无损检测技术程度,是标志着一个国家对结构工程验收和质量检测技术的高低”,正说明了发展无损检测技术的必要性和实际意义。v 无损检测技术的特点:v无损于材料、结构的组织和使用性能;v可以直接在试体或结构上,对质量或强度进行重复、全面的检测,弥补了因各种因素影响造成材料试件与结构物质量差别的缺点;v选用不同的方法,检测和判别结构表层和内部的质量或损伤,操作简便、迅速;v随着信息处理技术的发展,有利于实现“在线检测和生产自动化”。国内外无损检测方法分类(一)检测目的常用方法测 试 量基本原理混凝土强度回弹法超声脉冲
3、法回弹超声综合法超声衰减综合法射线法落球法(脉冲回波法)钻芯法拔出法压痕法射击法回弹值超声脉冲传播速度回弹值和声速声速和衰减吸收或散射强度振动参数芯样抗压强度拉拔强度压力和压痕直径或深度探针射入深度 根据混凝土应力应变性质与强度的关系,用弹性模量或粘塑性指标推算标准抗压强度及特征强度;根据混凝土密实度推算强度振动参数与强度的关系;局部区域的抗压、抗拉或抗冲击强度推算成标准抗压强度及特征强度。国内外无损检测方法分类(二)检测目的常用方法测 试 量基本原理混凝土内部缺陷超声脉冲法 声时、波高、波形、频谱、反射回波波的绕射、衰减、叠加等射线法穿透后的射线强度射线强度记录或摄影脉冲回波法 反射波位置缺
4、陷表面形成反射波雷达法 雷达波反射位置缺陷表面形成雷达反射信号国内外无损检测方法分类(三)检测目的常用方法测 试 量基本原理混凝土受力历史和损伤程度声发射法声发射信号、事件记数、幅值分布、能谱等声发射信号源定位、声发射的凯塞效应、破坏过程的连续观察 超声脉冲法 声速、衰减国内外无损检测方法分类(四)检测目的常用方法测 试 量基本原理弹性模量和粘塑性性质及耐久性共振法敲击法超声法透气法 固有频率、品质因数对数衰减率声速、衰减系数、频谱气压变化 振动分析应力波传播分析孔隙渗透性 国内外无损检测方法分类(五)检测目的常用方法测 试 量基本原理钢筋位置和锈蚀磁测法电测法射线法磁场强度钢筋的半电池电位射
5、线钢筋对磁场的影响电化学分析射线摄影 二 超声波检测基本概念v1 混凝土超声检测技术发展概况v1928年世界上第一台连续波的超声波石材探测仪问世。20世纪30年代初开始有学者尝试进行混凝土中声波传播性质的研究,有的采用金属超声波探伤仪,有的采用敲击产生振动的方法。40年代末50年代初,加拿大、德国和英国的一些学者开创了超声波检测混凝土质量这一新领域。至20世纪70年代末,随着电子技术的发展,超声波检测仪的不断改进和完善,促进了超声波检测技术的发展。v我国自20世纪50年代末60年代初开始超声法检测混凝土质量技术的研究和应用,先后完成了“超声波检测混凝土缺陷”、“超声波检测混凝土强度”、“超声回
6、弹综合法检测混凝土强度”、“超声波检测灌注桩完整性”、“超声波检测钢管混凝土质量”等课题的应用研究,目前都具有相应的技术规程。同时,国产的超声检测仪也达到了国际先进水平,形成了从模拟式的CTS-25(汕头超声仪器公司)到数字式的CTS-45以及智能化的NM系列(北京康科瑞公司)、ZBL-U系列(北京智博联公司)、RSM-SY5(武汉岩海公司)等品种繁多、性能稳定可靠、使用方便的一系列仪器。v值得一提的是,国内的超声检测仪比较注重波型的显示,无论是模拟式还是数字式、智能型的仪器,都具备波型显示、手动游标判读功能。而国外的仪器,基本上都不具备波型显示功能,超声参数均由仪器自动判读,必要的时候可以将
7、显示信号输出到示波器上显示波型,在实际使用中反而不如国产仪器方便。2 超声波的基本知识v振动与波v超声波是一种机械振动波。当物体中某一个质点突然获得一定能量,在其自身的平衡位置产生往复运动时,机械振动即产生了。由于物体介质的连续性,则这种振动会传递到邻近的质点,并且一个个传递下去,从而使得振动在物体内传播,这就是机械振动波。注意在机械振动波传播过程中,质点本身是不会传播的,传播的仅仅是振动这种运动方式以及能量。2 超声波的基本知识v波的种类va 纵波:质点振动方向与波的传播方向一致的波称为纵波。产生于媒质受到拉、压交变力的作用,在固体、液体和气体中均能传播。这是混凝土超声检测中应用最广泛的形式
8、。从形态上看,也叫“疏密波”,即有的质点之间因为振动互相远离(疏),有的质点直接互相靠近(密)。vb 横波:质点振动方向与波的传播方向垂直的波称为横波。具有切变弹性变形能力的物体,其媒质受到剪切力作用的时候,产生剪切变形,使质点沿切线方向振动而产生横波。只有固体才具有切变弹性变形能力,因此横波只能在固体中传播。vc 表面波:质点的振动方向与波的传播方向具有纵波和横波质点振动的综合特性,固体介质表面质点以纵向和横向两种振动的合成振动,便围绕其平衡位置做椭圆形振动。表面波的振动能量随着深度的增加而迅速减小,故只能沿着固体表面传播。产生在固体介质自由表面的表面波称为瑞利波,瑞利波的最大特点是其波速只
9、与介质的弹性常数有关,与振动频率无关,且属于二维振动的波,在固体表面传输的能量损耗小,传播距离远,可用于检测水下混凝土的表面裂缝情况。v纵波波速最高。纵波质点振动方向波传播方向横波波传播方向质点振动方向表面波波传播方向质点振动轨迹xyz波的形式v根据波阵面,波可以分为平面波、球面波和柱面波。v波阵面:振动传播过程中相位相同的所有质点轨迹的集合所形成的面。v波线:振动传播的方向。v波前:在某一瞬间振动传播到最前沿的各质点轨迹形成的面。va 平面波:波阵面呈平面的波。可以看作是由无限大板状振源或从无限远处的点状振源发出的振动波。例如光线,可以看作平面波。vb 球面波:波阵面呈球面的波。由点状振源发
10、出。对于混凝土质量检测,因振源(换能器)尺寸较小,振动频率不太高,传播距离有限,因此一般都看成球面波。vc 柱面波:波阵面为同轴圆柱面的波。由无限长直棒振源发出的振动波。波阵面形状不同的波v(a)平面波 (b)球面波(剖面示意图)(c)柱面波v1波线 2波阵面 3波前 振动频率v根据机械波的振动频率,可分为次声波、可闻声波、超声波和特超声波。va 次声波:振动频率小于10Hz,人耳听不见。一些动物可听见次声波。传播距离远,可应用于声纳导航、海底潜艇声纳探测等等。vb 可闻声波:振动频率10Hz20kHz,人耳理论上能听到的声波。实际上,50Hz以下的低音一般人无法分辨,随着年龄的增大,很多人对
11、于高频声波的听觉也在不断退化。vc 超声波:振动频率在20Hz107kHz。广泛应用于无损检测。混凝土中常用的频率范围是20kHz300kHz,金属探伤的一般为500kHz2MHz。低频超声波常常与可闻声波伴随在一起。vd 特超声波:振动频率超过107kHz。振动形式v声波振动中,还可根据质点振动的连续与否分为脉冲波和连续波。va 脉冲波:波在传播过程中,媒质的质点作单个或间歇振动的波。在科研、检测中最常用的一种波,在混凝土超声检测中用的就是脉冲超声波。vb 连续波:波在传播过程中,各个质点均连续不断地振动。当各个质点都作同一频率的连续不断振动时,称为余弦波(也称正弦波或简谐波)。v脉冲波在数
12、学上可以分解为许多不同频率的余弦波,是一种复合波,因此余弦波是超声波研究的数学基础。3 超声波的物理量v基本量:v速度:超声波单位时间传播的距离,用v表示,单位m/s;v频率:等于超声波传播介质中质点振动的频率,用f表示,单位赫兹Hz;v周期:在超声波传播介质中,相邻两个同相位质点间波传播的时间间隔,用T表示,单位秒s。f和T互为倒数。v波长:振动传播一个周期所走的路程,用表示,单位m;v振幅:质点振动幅度,用A表示。v它们之间有这样的关系:Tvv声场:被声波充满的空间。v声场的状态可用声压、声强、声阻抗等特征量来描述。v声压:声场中某一点在某一瞬间因声波所引起的压强,用p表示,单位是帕斯卡P
13、a。vp=cvv是介质密度。c是介质质点振动速度,v在声学之中称为声阻抗,用Z表示。v声强:垂直于声波传播方向上的单位面积在单位时间内通过的声波能量。用I表示。22222121ZAvAIv近场区:圆板状声源的声场特性之一。即从声源发射点起,有一个N点,从声源发射点到该点之间声压出现若干个极大值和极小值,这是由于圆板状声源各单元点辐射的声波在轴线互相干涉、叠加的结果,0N的范围称为近场区。超过N点后,声压p随距离的增加而明显减小,称为远场区。N的大小取决于圆板状声源的直径D和声波的波长,它们之间存在如下关系:442DNv由于近场区声压变化很复杂,在实际应用中应避开这一区域。在混凝土超声波检测中,
14、超声波频率不高,波长一般为30mm90mm,声速一般为3.8km/s5.4km/s,换能器的直径为35mm45mm,所以N都在10mm以内,一般不会对检测造成影响。4 声波在介质中的传播特性v一般把超声波在混凝土中的传播路径看成直线。和其它波类似,声波也会发生干涉、绕射和衍射等等。v声波的干涉:两个频率、波长以及相位相同或相位差恒定的波源称为相干波源,它们产生的波称为相干波,两个相干波在同一介质中相遇时,两个谐振频率叠加,从而产生某些点因为相位相同而振动加强,某些点因为相位相反振动减弱甚至抵消。这种在空间出现固定的最大振幅点和最小振幅点的现象,称为波的干涉现象。v根据惠更斯-菲涅耳原理,平面波
15、在均匀媒质中传播时,在其传播方向上遇到一定尺寸的孔或障碍物时,会出现下列两种情况:v孔或障碍物的尺寸比波长大许多,则声波基本仍沿直线传播,在孔的外侧和障碍物后面没有声波,如图3所示。v当园孔或障碍物尺寸较小,接近于波长时,在园孔或障碍物处形成许多子波源,都向园孔另一侧或障碍物表面发出球面子波,这些子波干涉叠加的结果使得声波局部改变方向通过小孔或绕过小障碍物继续传播,称为声波的绕射现象,如下图所示。声波遇到大孔洞或大障碍物后的传播v(a)孔径远大于 (b)障碍物远大于 声波的绕射现象v(a)平面波在小孔处的绕射 (b)平面波在小障碍物处的绕射 5 超声波在媒质界面上的传播特性v当声波从一种媒质传
16、播到另一种媒质时,在两种媒质的分界面上,只有一部分声波穿透界面,在另一媒质中继续传播,称之为折射波或透射波;另一部分声波被反射回原媒质称为反射波。穿过界面继续传播的声波,其传播方向、能量及波形等都会发生变化,变化的情况取决于两种媒质的阻抗、声波入射方向等因素。v当超声波垂直于媒质界面入射时,通常在界面产生两部分超声波:一为反射波,一为透射波。当超声波不垂直于媒质界面入射时,则根据入射角度,在界面会产生反射波、折射波,折射波的方向产生改变,服从Snell定律(光学折射定律)。在一定的角度范围内,折射波会分解成折射纵波、折射横波。在特定的角度下,对于入射纵波,会出现一个临界角,使得折射纵波消失,该
17、角度称为第一临界角,这是超声检测中用来获取横波的一种方法。v折射角度的变化与两种媒质的阻抗、入射角度等都有关系。6 超声波传播过程中的能量衰减v超声波在媒质中传播时,其振幅随传播距离的增大而逐渐减小,这种现象称为衰减。v衰减是限制超声波检测距离的主要因素。当测距较大时,会降低测试灵敏度,增大测试误差。另一方面,可利用衰减大小判断混凝土的质量状况(声波透射法测桩时常用)。v振幅随距离增大而减小的规律可用下式表示:xeAA0v上式中称为媒质的衰减系数,其度量单位是dB/cm,即单位长度上损耗的分贝数,用声压或振幅表示为:v在实际应用中,可以从仪器上直接读取波幅值,并配合衰减按键进行衰减量的测读。v
18、对于平面波,其衰减主要来源于吸收和散射,对于球面波,除了吸收衰减和散射衰减,还有波束本身的扩散衰减。ppx0lg201AAx0lg201v吸收衰减:超声波传播过程中,由于媒质的黏滞性,导致质点间产生内摩擦,使一部分声能转换成热能;同时超声波作为机械波,在传播的过程中,是质点(或分子)通过相互作用碰撞来传递能量的,这中间有一个时间过程,称之为“分子驰豫过程”,这两方面的损耗导致了媒质的吸收衰减。吸收衰减随超声波频率提高而增大,与频率的二次方成正比。v超声波在气体和非均质固体中吸收衰减比较大,在液体和均匀固体中吸收衰减较小。v散射衰减:当媒质中存在小尺寸的异物时,当超声波入射到这些异物时,这些异物
19、会形成新的振源向四周发射超声波,这些声波相互干涉、叠加的结果造成超声能量的衰减,称之为散射衰减。由于混凝土是由水泥砂浆、石子等组成的多相堆聚体,其内部结构复杂,既有石子、砂浆等固体颗粒,又有气孔、微裂缝等不连续构造,因此其散射衰减很大。当超声波进入混凝土后,在砂浆中沿直线传播,当遇到石子后,波长比石子小的高频脉冲被反射,一部分折射进入石子(改变传播方向),到石子-砂浆边界又折射进入砂浆;波长比石子尺寸大的低频超声脉冲则绕过石子继续传播。当超声波气孔或微裂缝时,其中波长比较小的高频脉冲也被反射,而波长比较大的低频脉冲则绕过。因此最终接收的超声波比发射波振幅减小、频率降低。v扩散衰减:声束都有一定
20、的扩散角,随着传播距离的增大,扩散的面积增大,而能量并不增加,导致单位面积上的能流密度降低,叫做扩散衰减。扩散衰减仅取决于超声波换能器的直径和振动频率,与传播媒质的性质无关。7 混凝土超声检测特点:v由于混凝土由固-液-气三相组成的具有弹黏塑性的复合材料,其内部存在分布极其复杂的界面,例如砂浆-石子界面、砂浆-气孔界面、砂浆-微裂缝界面等等,因此超声波在混凝土中的传播情况比均匀介质中负责得多,因此决定了混凝土超声检测具有如下特点:v只能采用低频超声波v混凝土中存在多相,相互之间的声阻抗差异很大(如砂浆-气孔界面),导致散射衰减严重,散射衰减对高频超声波影响更大,而混凝土结构构件尺寸一般都有几百
21、mm甚至几米,为了超声波传播距离足够长,必须采用低频超声波,一般采用20kHz300kHz的低频超声波。而金属超声探伤中采用的超声波频率一般都在1000kHz以上(1000kHz=1MHz)。v超声波指向性差v由于混凝土超声波采用的低频换能器在混凝土中的传播波长长(=40mm90mm),换能器直径较小(D30mm40mm),由下式:)/22.1(sin1D可知,波束的扩散角2一般为5090,近似于球面波。同时,由于混凝土内的石子等存在不规则界面,超声波在混凝土内产生反射、折射,并且互相干涉、叠加,使得大部分声波产生漫反射。v超声波在混凝土内并非直线传播v由于混凝土的非均质性,超声波在无数不规则
22、的石子与砂浆界面上发生反射和折射,使得接收到的声波并非严格地沿测试方向直线传播,只能大致上近似到看作沿直线传播。v接收到的信号十分复杂v由于超声纵波在混凝土内传播时,沿途会产生许多次生反射纵波、折射纵波以及波型转换产生的横波,这些波以不同相位、不同路径相互叠加、干涉,造成接收到的超声波信号十分复杂。三 超声检测设备简介v超声波应用范围:包括医学、各种探测等等;v医学上采用的超声仪比较先进,现在B型超声(成像显示)已经普遍得到应用;v金属探伤中采用的则是A型超声,即反射波显示型,成像技术也在研究中。v由于混凝土对超声波的衰减大,且混凝土结构构件的特点决定了其截面尺寸较大因此超声测距长,因此混凝土
23、超声波检测仪目前只能采用透射式(一发一收式),而无法采用金属探伤中的反射式,目前对于混凝土超声成像的技术也在研究中,但其难度相当大。当前常用的透射式超声检测设备的基本功能,就是通过发射换能器(也叫发射探头)向混凝土中发射低频超声脉冲,然后通过接收换能器(接收探头)接收透射超声信号并将信号经过放大、滤波等信号处理以后显示出来,某些智能化的超声仪器能将信号储存下来进行后期的信号处理,通过对这些信号的计算、加工,可以分析被测混凝土的内部质量。1 超声检测仪v超声检测仪器的发展经历:电子管、晶体管、大规模集成电路、计算机处理系统等四代。v汕头超声电子公司生产的CTS-25型超声仪就是晶体管为主、带有部
24、分集成电路的仪器,而智博联的ZBU520自动测桩仪则是第四代智能化仪器。前者为模拟式,其接收信号为连续的模拟量,后者为数字式智能型,其接收信号是间断的数字信号,经模/数(A/D)以及数/模(D/A)转换后显示成波形。v超声检测仪的性能要求依据标准是混凝土超声波检测仪(JG/T 5004-92)。v目前超声检测仪,国产的比进口的更加实用,价格也比较实在。主要原因是国产仪器都带有波形显示功能,即使是智能仪器也带有模拟式读数、手动游标等功能,而进口仪器很多不带波形显示,完全靠仪器自动判读,容易出现丢失首波的问题。2 超声换能器v换能器,即具有能量转换功能的传感器。v因为超声仪能处理电信号,即电压随时
25、间的波动,而混凝土中传播的超声波是机械波,首先需要将电信号转变成机械振动,以发生超声波,同时还需要将机械振动转变为电信号,以接收超声波到检测仪器。v通过“压电效应”可以达到这个目的。压电效应v 正压电效应:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。v逆压电效应:对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。v压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式。
展开阅读全文