生物脱氮除磷课件1培训课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《生物脱氮除磷课件1培训课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 课件 培训
- 资源描述:
-
1、1第1章 概述第2章 生物脱氮机理及生物学基础第3章 生物除磷机理及生物学基础第4章 生物脱氮除磷工艺2第1章 概述 1.1 我国氮磷的污染状况 1.2 氮磷对水体的危害3NH4+NO2-NO3-N2、NxO水解亚硝酸菌硝酸菌O2碱度O2碱度BOD碱度有机氮反硝化菌有机氮(产生细胞物质)同化作用厌氧氨氧化4第2章 生物脱氮机理及生物学基础 2.1 2.1 生物脱氮机理及生物学基础生物脱氮机理及生物学基础2.2 生物脱氮反应动力学2.3 生物脱氮影响因素2.4 生物脱氮新理论 2.5 生物脱氮新工艺62.1.1 生物脱氮反应过程 1)氨化反应:将有机氮转化为氨。2)硝化反应:将氨氧化为亚硝酸盐和
2、硝酸盐。3)反硝化反应:将亚硝酸盐和硝酸盐还原为N2。72.1 生物脱氮机理及生物学基础 2.1.1 生物脱氮反应过程 2.1.2 2.1.2 硝化反应与微生物硝化反应与微生物 2.1.3 反硝化反应82.1.2 硝化反应与微生物一、硝化反应微生物一、硝化反应微生物 二、硝化反应式 92.1.2 硝化反应与微生物一、硝化反应与微生物 (一)硝化过程 (二)对硝化细菌的新认识102.1.2 硝化反应与微生物一、硝化反应与微生物(一)硝化过程 与微生物 硝化菌由亚硝酸细菌(氨氧化细菌)亚硝酸细菌(氨氧化细菌)和硝酸细菌(亚硝酸硝酸细菌(亚硝酸盐氧化细菌)盐氧化细菌)两个亚群组成。自养型硝化菌都是一
3、些革兰氏阴性菌,硝化时它们以氧作为最终的电子受体,属于严格的好氧菌。(1)第一步由亚硝酸菌亚硝酸菌将氨氮(NH4和NH3)转化成亚硝酸盐(NO2-);(2)第二步再由硝酸菌硝酸菌将NO2-氧化成硝酸盐(NO3-)。11(二)对硝化细菌的新认识 硝化细菌属自养型细菌,碳源是CO2。有些自养型硝化细菌能混养(混合营养)生长(以CO2、有机物为碳源),少数可异养生长。亚硝酸细菌(五个属)l Nitrosomonas 自养、混养;l Nitrosococcus 自养、混养;l Nitrosospira 严格自养;l Nitrosovibrio 自养、混养;l Nitrosolobus 自养、混养;以氨
4、为唯一能源,自养生长时,以CO2为唯一碳源;混养时,可同化有机物。2.1.2 硝化反应与微生物12(二)对硝化细菌的新认识 硝酸细菌:自养型,有些可混养生长,某些菌株能异养生长。l Nitrobacter 自养、可异养,自养快于异养l Nitrococcus 严格自养l Nitrospina 严格自养l Nitrospira 自养、混养以NO2-为唯一能源,自养生长时,以CO2为唯一碳源;混养时,可同化有机物。2.1.2 硝化反应与微生物132.1.2 硝化反应与微生物 一、硝化反应微生物 二、硝化反应式二、硝化反应式 142.1.2 硝化反应与微生物二、硝化反应式 (一)硝化反应的理论反应式
5、 (二)硝化反应的生化反应式 (三)硝化反应的化学计量关系 (四)硝化反应代谢途径与电子转移数15二、硝化反应式 NH33/2O2 NO2-H2OH NO2-1/2 O2 NO3-NH32O2 NO3-H2OH(一)硝化反应的化学反应式硝化反应 耗氧量:NH4NO3-4.57 g O2/g NH4-NNH4NO2-3.43 g O2/g NH4-N NO2-NO3-1.14 g O2/g NO2-N16二、硝化反应式 NH3+O2 NH2OH(二)硝化反应的生化反应(1)氨氧化为羟氨:氨单加氧酶 NH3 NH2OH NO NO2-NO3-氨单加氧酶羟胺氧还酶羟胺氧还酶亚硝酸盐氧还酶17 NH2
6、OH H2O HNO24H 4 e-G0=+23 kJ/mol 0.5 O2+2H 2 e-H2O G0=-137kJ/mol(二)硝化反应的生化反应式(2)羟胺氧化为亚硝酸盐:羟胺氧还酶 分两步,中间产物为NO NH2OH0.5 O2 HNO22H 2 e-G0=-114 kJ/mol羟胺氧化所需的氧是由水提供的18NO2-H2O NO3-+2H+2e-G0=+83kJ/mol0.5O2+2H+2e-H2O G0=-137kJ/mol(二)硝化反应的生化反应式(3)亚硝酸氧化为硝化盐:亚硝酸盐氧还酶 NO2-0.5 O2 NO3-G0=-54 kJ/mol亚硝酸盐氧化所需的氧是由水提供的19
7、(三)硝化反应的化学计量关系 第一步 1.00NH41.44O20.0496HCO3 0.99NO2-0.01 C5H7NO20.97H2O1.99H+第二步 1.00NO2-0.50O2 0.031CO2 0.00619NH40.124H2O 1.00NO3-+0.00619C5H7NO20.00619H+细胞物质:细胞物质:C5H7NO2(1)硝化反应生物合成反应式:若考虑硝化细菌新细胞的合成,则反应式为:20硝化生物合成总反应式:NH41.89O20.0805CO2 0.984NO3-0.0161C5H7NO20.952H2O1.98H+21 将1gNH3-N氧化为硝酸盐:消耗约 4.3
8、 gO2 中和 7.14g 碱度 利用 0.08g 无机碳 产生 0.15g 新细胞(2)硝化反应的化学计量关系 消耗氧的计量关系:完全氧化1gNH4+-N,需消耗4.25gO2 完全氧化生成生成1gNO3-N,需消耗4.34gO222 代谢过程由多种酶催化代谢过程由多种酶催化 氨单加氧酶(AMO)、羟胺氧还酶(HAO)、亚硝酸盐氧还酶(NOR)。硝化反应代谢途径硝化反应代谢途径:NH4 NH2OH NO NO2-NO3-电子转移数:电子转移数:NH4氧化为NO2-,经历了多个步骤、多个步骤、6个电子个电子变化,说明亚硝酸菌的酶系统十分复杂。亚硝酸氧化反应只经历了1步、步、2个电子个电子变化。
9、(四)硝化反应代谢途径与电子转移数232.1 生物脱氮机理及生物学基础 2.1.1 生物脱氮反应过程 2.1.2 硝化反应与微生物 2.1.3 2.1.3 反硝化反应反硝化反应242.1.3 反硝化反应一、反硝化原理(1)原理与反应(2)反硝化代谢途径(3)参与反硝化代谢的酶(4)反硝化反应化学计量关系二、对反硝化菌的新认识252.1.3 反硝化反应(1)原理与反应 生物反硝化生物反硝化是指污水中的硝态氮NO3-和亚硝态氮NO2-,在无氧或低氧条件下被反硝化细菌还原成氮气的过程。反应式如下:NO3-2H NO2-H2O NO2-3H 1/2N2H2OOH 总:NO3-5H 1/2N22H2OO
10、H新细胞OHOHCONBODNO2223一、反硝化原理有机物为供氢体26 反硝化过程中NO2-和NO3-的转化是通过反硝化细菌的异化作用完成的,被还原成N2。同化作用是NO2-和NO3-被还原成NH3N,用于新细胞的合成。NO3-NO2-NH2OHNH3NO N2ON2同化反硝化,合成细胞异化反硝化异化反硝化(2)反硝化代谢途径气态271)硝酸盐还原酶 NO3-NO2-2)亚硝酸盐还原酶 NO2-NO3)NO还原酶 NO N2O4)N2O还原酶 N2O N2(3)参与反硝化代谢的酶28(4)反硝化反应化学计量关系 完全还原 1gNO3-N2 相当于提供了2.86gO2,产生0.45gVSS,产
11、生3.57g碱度当NO3-N浓度为1mg/L以上时,可认为反应速率为零级反应NO3-+5/6CH3OH 5/6CO2+1/2N2+7/6H2O+HO-以甲醇为电子供体的反硝化反应式:29(4)反硝化反应化学计量关系 完全还原 1gNO3-N2 约消耗 2.47g甲醇,产生 0.45gVSS,产生 3.57g碱度 (假设水中无NH3)NO3-+5/6CH3OH 1/2N2+5/6CO2+7/6H2O+HO-以甲醇为电子供体的反硝化反应式:考虑细胞合成,以甲醇为电子供体的反硝化反应式:NO3-+1.08CH3OH 0.47N2+0.056C5H7NO2+0.76CO2+1.44H2O+HO-30二
12、、对反硝化菌的认识 反硝化菌是异养兼性厌氧菌u 反硝化菌的能源(1)化能型:l大多数为化能异养型 以有机物作为能源和碳源l少数化能自养,以氢、氨、硫、硫化氢等无机物为能源;S+NO3-+H2O SO42-+N2+H+(2)光能型(光合细菌):有光时,光能异养生长。黑暗条件,化能异养生长。31第2章 生物脱氮机理及生物学基础 2.1 生物脱氮机理及生物学基础2.2 2.2 生物脱氮反应动力学生物脱氮反应动力学2.3 生物脱氮影响因素2.4 生物脱氮新理论 2.5 生物脱氮新工艺322.2 生物脱氮反应动力学 2.2.1 2.2.1 硝化反应动力学硝化反应动力学 2.2.2 反硝化反应动力学33
13、硝化反应更接近于莫诺特莫诺特(Monod)关系式关系式的基本条件。因此,常用莫诺特动力学方程来反映硝化细菌的反应和生长过程。硝化反应中,亚硝酸菌亚硝酸菌的增值速度控制控制硝化的总反应速度。一、亚硝酸菌增值速率二、NH4+-N氧化反应速率Monod 动力学关系三、亚硝酸菌的净增值速度四、硝化的最小污泥龄2.2.1 硝化反应动力学34 (1)亚硝酸菌比比增值速度莫诺特关系式式中N亚硝酸菌的比增殖速度,1/d;Nmax亚硝酸菌的最大比增殖速度;N-NH4+-N浓度浓度,mg/L;X亚硝酸菌浓度,mg/L;KSN饱和常数,mg/L;NKNdtdXXSNNTNmax)(1一、亚硝酸菌增值速度(2)亚硝酸
14、菌的增殖速度为:NKNXdtdXXSNNTNmax式中 亚硝酸菌增殖速度,mg/(Ld)35(3)NH4+-N氧化速度dtdNqXdtdNXqqNNH4+-N比氧化速度比氧化速度,1/d 可用下式表示:NH4+-N氧化速度氧化速度 mg/(Ld)式中 N-NH4+-N浓度浓度,mg/L;X亚硝酸菌浓度,mg/L;36(4)亚硝酸菌产率系数YN NTNNdXdtYdNqqdtNqYdtdNqNNNqY37二、NH4+-N氧化反应Monod 动力学关系maxNSNNXKNmaxNNSNNKNmax()NNSNNXqYKN NqYNNNqYmax()NNNSNNqYKN38由以上公式,NNNKYma
15、x令NSNKXNdNqdtKN NNSNdNK NdtqXKN 则NH4+-N氧化 Monod 动力学关系式如下:max()NNSNNXqYKNmax()NNNSNNqYKN最大氨氮氧化速度 NH4+-N氧化速度氧化速度 NH4+-N比氧化速度比氧化速度 39ETgdtdXdtdXdtdX 式中:gdtdX亚硝酸菌净净增殖速度;TdtdX亚硝酸菌合成速度;EdXdt亚硝酸菌自身分解自身分解速度。(1)亚硝酸菌的净增值速度dEdXK Xdt式中 Kd 亚硝酸菌自身分解系数,1/d。三、硝化的最小污泥龄40上式各项除 X 得:dTgKXdtdXXdtdXdNgK 式中:XdtdXgg 亚硝酸菌净比
16、增殖速度。或将上式代入公式得:XKdtdXdtdXdTggN41dNcK1污泥龄与净比增值速率的关系:1cg得:dNgK代入min1cNdK为了维持硝化菌的数量,设计最小污泥龄cmin必须满足:设计的固体停留时间cd 应为计算值的1.52.5倍。(2)硝化的最小污泥龄42硝化反应的动力学常数(20)常数符号单位数值亚硝酸菌硝酸菌总最大比增长速度Nmaxd-10.60.80.61.00.60.8饱和常数KSNgNH4+-N/m30.30.70.81.20.30.7产率系数YNgVSS/gN0.100.120.050.070.150.20自身分解系数Kdd-10.030.060.030.060.0
17、30.06对于污水处理来说,出水氨氮一般较高,可认为是零级反应。25,亚硝酸菌生长速率硝酸菌432.2 生物脱氮反应动力学 2.2.1 硝化反应动力学 2.2.2 2.2.2 反硝化反应动力学反硝化反应动力学442.2.2 反硝化反应动力学当NO3-N浓度为1mg/L以上时,可认为反应速率为零级反应一、反硝化菌比增值速度莫诺特关系式二、NO3-N的还原反应莫诺特动力学公式三、反硝化菌的净增殖速度四、反硝化菌的污泥龄 在反硝化反应时,硝酸盐为单一的物质,所以反硝化反应符合莫诺特关系莫诺特关系。因此,用莫诺特(Monod)动力学方程来反映反硝化细菌的反应和生长过程。45DKDdtdXXSDDTDm
18、ax1D反硝化菌的比增殖速度,1/d;Dmax反硝化菌的最大比增殖速度,1/d;DNO3-N浓度,mg/L;X反硝化菌浓度,mg/L;KSD饱和常数,mg/L;一、反硝化菌比增值速度莫诺特关系式(1)反硝化菌比增值速度莫诺特关系式DKDXdtdXXSDDTDmax式中 反硝化菌的增殖速度,mg/(L.d)。(2)反硝化菌的增殖速度46dtdDqDdDqdtqXX NO3-N的还原速率 mg/(L.d);NO3-N的比还原速率 1/d;(3)NO3-N的还原速度NO3-N的还原速度可用下式表示:DNO3-N浓度,mg/L;X反硝化菌浓度,mg/L;47TDDDdXdtYdDqqdt(4)反硝化菌
19、的产率系数:DqYdtdDqDDDqY48NO3-N的还原速度如下:DqYmax()DDDSDDXqYYKDmaxDSDDXKDDDDqYmaxDDSDDKDmax()DDDDDSDDqYYKD二、NO3-N的还原反应莫诺特动力学公式NO3-N 还原速率NO3-N 比还原速率49max()DDSDDXqYKDmax()DDDSDDqYKDmaxDDDKY令DSDK XDqKDDDSDK DqKD则,NO3-N还原反应莫诺特动力学公式如下:NO3-N还原速率NO3-N比还原速率50ETgdtdXdtdXdtdXgdtdX反硝化菌净净增殖速度;TdtdX反硝化菌总总增殖速度;三、反硝化菌的净增殖速
20、度EdtdX反硝化菌自身分解自身分解速度;dEdXK XdtdK反硝化菌自身分解系数,1/d。51dTgKXdtdXXdtdXdDgKXdtdXgg反硝化菌净比增殖速度。令:将上式带入净增殖速率公式,同时各项除以X,得反硝化菌净比净比增殖速度:52gc1得出dDcK1根据美国环保局提出,反硝化过程中反硝化菌自身分解系数Kd=0.04d-1。四、反硝化菌的污泥龄dDgK代入min1ccDdK最小污泥龄:53第2章 生物脱氮机理及生物学基础 2.1 生物脱氮机理及生物学基础2.2 生物脱氮反应动力学2.3 2.3 生物脱氮影响因素生物脱氮影响因素2.4 生物脱氮新理论 2.5 生物脱氮新工艺542
21、.3 生物脱氮影响因素 2.3.1 硝化反应的影响因素硝化反应的影响因素 2.3.2 反硝化反应的影响因素55(1)温度(2)溶解氧(3)pH(4)碱度(5)抑制性物质(6)污泥负荷(7)生物固体停留时间 2.3.1 硝化反应的影响因素5615098.015TNNTe(1)温度:一般认为,可在445范围内进行。但目前的试验结果表明,即使在0.54 下,仍发生硝化反应。硝化菌比增长速度与温度(T)的经验关系:202004.1TddTKK 硝化菌自身分解系数与温度(T)的经验关系:min11cgTNTdTK则污泥龄:57 亚硝酸菌的净比增殖速度(gT)与水温的关系:0.116(15)0.18TgT
22、e在水温T为20、15、10时,固体停留时间应分别大于3.1d、5.6d、9.9d。0.116(15)0.116(15)115.560.18TcTgTee58硝化菌各属生存温度范围细菌属名合适温度()亚硝酸细菌亚硝化单胞菌属530亚硝化螺菌属1530亚硝化杆菌属240亚硝化球菌属240亚硝化叶状菌属1530亚硝化弧菌属-530硝酸细菌硝化杆菌属540硝化螺菌属2030硝化刺菌属2530硝化球菌属153059(2)溶解氧 DO 2mg/L(3)pH值 最佳 pH范围为 78(也有资料显示为89),当pH降到55.5以下时,硝化反应几乎停止。(4)碱度 对pH变化起缓冲作用,每氧化1g氨氮需消耗7
23、.14g 碱度(以CaCO3计)60(5)抑制性物质 重金属、酚、游离氨等 游离氨的抑制浓度:亚硝酸菌 10150 mg/L 硝酸菌 0.11 mg/L61 NaClO3在0.02mol的浓度下仅抑制硝酸细菌硝酸细菌对NO2-的氧化反应,在较短的时间内(30min),对其它生物反应基本不抑制;烯丙基硫脲烯丙基硫脲可以抑制亚硝酸菌亚硝酸菌的活性,在5mg/L的浓度下能完全抑制亚硝酸菌对氨氮的氧化反应。抑制剂硝化反应的抑制剂为 氯酸钠(NaClO3):抑制NO2-的氧化。烯丙基硫脲(allylthiourea,简称ATU):抑制氨氮的氧化。烯丙基硫脲:烯丙基硫脲:NH4 NO2-NaClO3:NO
24、2-NO3-抑制抑制抑制抑制62(6)污泥负荷:污泥有机负荷 kgBOD/(kgMLSS.d)污泥氨氮负荷 kgNH3-N/(kgMLSS.d)当处理高NH3-N水时,应采用氨氮负荷进行设计或校核。要达到较低的出水氨氮:0.07kg NH3-N/(kgMLSS.d)。63固体停留时间cd的经验公式:美国环境保护局(EPA)建议的cd公式:)15(098.013.25.2TcdeTcde0627.06.20)5.12.1(日本下水道协会建议的cd公式:(7)生物固体停留时间T 水温64 亚硝酸菌的净比增殖速度(gT)与水温的关系:0.116(15)0.18TgTe0.116(15)0.116(1
25、5)115.560.18TcTgTee水温T()固体停留时间c(d)203.115 5.610 9.9652.3 生物脱氮影响因素 2.3.1 硝化反应的影响因素 2.3.2 反硝化反应的影响因素反硝化反应的影响因素662.3.2 反硝化反应的影响因素 碳源碳源:一是原废水中的有机物,当废水的BOD5/TKN大于35时,可认为碳源充足;二是外加碳源,多采用甲醇;pH:适宜的pH值是6.57.5,pH值高于8或低于6,反硝化速率将大大下降;溶解氧溶解氧:反硝化菌适于在缺氧条件缺氧条件下发生反硝化反应,但另一方面,其某些酶系统只有在有氧条件下才能合成,所以反硝化反应宜于在缺氧、好氧交替的条件下进行
展开阅读全文