基坑支护结构设计培训讲义课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《基坑支护结构设计培训讲义课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基坑 支护 结构设计 培训 讲义 课件
- 资源描述:
-
1、第三章第三章 基坑工程支护设计基坑工程支护设计3.1 概述概述3.2 围护结构形式及适用范围围护结构形式及适用范围3.3 支护结构上的荷载支护结构上的荷载3.4 悬臂式围护结构内力分析悬臂式围护结构内力分析3.5 单锚式围护结构内力分析单锚式围护结构内力分析3.6 基坑的稳定验算基坑的稳定验算3.7 土钉墙支护设计土钉墙支护设计3.8 地下连续墙设计地下连续墙设计基坑支护目的与作用基坑支护目的与作用基坑支护的目的基坑支护的目的(1 1)确保基坑开挖和基础结构施工安全、顺利;)确保基坑开挖和基础结构施工安全、顺利;(2 2)确保基坑临近建筑物或地下管道正常使用;)确保基坑临近建筑物或地下管道正常
2、使用;(3 3)防止地面出现塌陷、坑底管涌发生。)防止地面出现塌陷、坑底管涌发生。基坑支护的作用基坑支护的作用 挡土、挡水、控制边坡变形。挡土、挡水、控制边坡变形。基坑工程的基本技术要求基坑工程的基本技术要求(1 1)安全可靠性;)安全可靠性;(2 2)经济合理性;()经济合理性;(3 3)施工便利性和工)施工便利性和工期保证性。期保证性。1 1)按开挖深度分按开挖深度分。开挖深度。开挖深度H H5m5m称为深基坑;称为深基坑;H H5m5m为浅基坑。为浅基坑。2 2)按开挖方式分按开挖方式分。分为放坡开挖和支护开挖两。分为放坡开挖和支护开挖两大类。大类。3 3)按功能用途分按功能用途分。楼宇
3、基坑、地铁站基坑、市。楼宇基坑、地铁站基坑、市政工程基坑、工业地下厂房基坑等。政工程基坑、工业地下厂房基坑等。4 4)按安全等级分按安全等级分。基坑规程基坑规程将基坑支护结将基坑支护结构分为三个安全等级。构分为三个安全等级。3.23.2 围护结构形式及适用范围围护结构形式及适用范围基坑侧壁安全等级及重要性系数基坑侧壁安全等级及重要性系数0安全安全等级等级破坏后果破坏后果一级一级支护结构破坏、土体失稳或过大变形对基坑支护结构破坏、土体失稳或过大变形对基坑周边环境及地下结构施工周边环境及地下结构施工影响很严重影响很严重1.101.10二级二级支护结构破坏、土体失稳或过大变形对基坑支护结构破坏、土体
4、失稳或过大变形对基坑周边环境及地下结构施工周边环境及地下结构施工影响一般影响一般1.001.00三级三级支护结构破坏、土体失稳或过大变形对基坑支护结构破坏、土体失稳或过大变形对基坑周边环境及地下结构施工周边环境及地下结构施工影响不严重影响不严重0.900.903.3 3.3 支护结构上的荷载支护结构上的荷载 作用在一般结构上的荷载可分为三类作用在一般结构上的荷载可分为三类:(1)(1)永久荷载永久荷载(2)(2)可变荷载可变荷载(3)(3)偶然荷载偶然荷载 作用在支护结构上的荷载主要有作用在支护结构上的荷载主要有:(1)(1)土压力土压力(2)(2)水压力水压力(3)(3)影响范围区内建筑物影
5、响范围区内建筑物,结构物荷载结构物荷载(5)(5)若支护作为主体结构的一部分时若支护作为主体结构的一部分时,应考虑地震力应考虑地震力(4)(4)施工荷载施工荷载:汽车汽车,吊车及场地堆载等吊车及场地堆载等(6)(6)温度影响和混凝土收缩引起的附加荷载温度影响和混凝土收缩引起的附加荷载土压力土压力n主动土压力和被动土压力的产生,前提条件是主动土压力和被动土压力的产生,前提条件是支护支护结构存在位移结构存在位移;n当支护结构当支护结构没有位移没有位移时,则土对支护结构的压力为时,则土对支护结构的压力为静止土压力静止土压力。n土压力的分布与支点的设置及其数量都有关系;悬土压力的分布与支点的设置及其数
6、量都有关系;悬臂支护桩土压力的实测值与按朗肯公式计算值的对臂支护桩土压力的实测值与按朗肯公式计算值的对比,非挖土侧实测土压力小于朗肯主动土压力,即比,非挖土侧实测土压力小于朗肯主动土压力,即计算结果偏大计算结果偏大。n土的内聚力土的内聚力C C、内摩擦角、内摩擦角值可根据下列值可根据下列规定适当调整:规定适当调整:n 在在井点降低地下水井点降低地下水范围内,当地面有排范围内,当地面有排水和防渗措施时,水和防渗措施时,值可提高值可提高20%20%;n在在井点降水土体固结井点降水土体固结的条件下,可考虑的条件下,可考虑土与支护结构间侧摩阻力影响,土与支护结构间侧摩阻力影响,将土的将土的内聚力内聚力
7、c c提高提高20%20%。土压力计算公式土压力计算公式n主动土压力主动土压力:n被动土压力被动土压力:)245(2)245()(21nnnniiinantgctghqe )245(2)245()(12ninnniinpntgctghqe水压力水压力n水压力,主要水压力,主要根据土质情况根据土质情况确定如何考虑水压力的确定如何考虑水压力的问题问题 。n对于对于粘性土粘性土,土壤的透水性较差,此粘性土产生的,土壤的透水性较差,此粘性土产生的侧向压力可采用侧向压力可采用水土合算水土合算的方法,即侧压力为相应的方法,即侧压力为相应深度处竖向土压力与水压力之和乘以侧压力系数。深度处竖向土压力与水压力之
8、和乘以侧压力系数。n对于对于砂性土砂性土,采用,采用水土分算水土分算,即侧压力为相应深度,即侧压力为相应深度处竖向土压力乘以侧压力系数与该深度处水压力之处竖向土压力乘以侧压力系数与该深度处水压力之和。和。3.4 3.4 悬臂式围护结构内力分析悬臂式围护结构内力分析n计算主动土压力和被动土压力计算主动土压力和被动土压力n并确定计算简图,确定嵌固深度、内力计算;并确定计算简图,确定嵌固深度、内力计算;n支护桩或墙的截面设计以及压顶梁的设计等。支护桩或墙的截面设计以及压顶梁的设计等。n根据朗肯根据朗肯-库伦土压力理论分层计算主动库伦土压力理论分层计算主动土压力和被动土压力;土压力和被动土压力;n在此
9、基础上确定图所示的计算简图。在此基础上确定图所示的计算简图。n据此简图求出嵌固深度据此简图求出嵌固深度h hd d;n最大弯矩截面位置及最大弯矩值;最大弯矩截面位置及最大弯矩值;n进行配筋设计或承载力计算;进行配筋设计或承载力计算;n计算支护结构顶端位移。计算支护结构顶端位移。内力与变形计算常用的方法有:内力与变形计算常用的方法有:极限平衡法和弹性抗力法两种极限平衡法和弹性抗力法两种:极限平衡法假设基坑外侧土体处于主动极限平衡状态,基坑内侧土体处于被动极限平衡状态1.1.入土较浅时单支点板桩墙支护结构计算:入土较浅时单支点板桩墙支护结构计算:方法方法:平衡法平衡法 当板桩墙入土深度较浅时,板桩
10、墙前侧的被动当板桩墙入土深度较浅时,板桩墙前侧的被动土压力全部发挥,板桩墙的底端可能有少量向前位土压力全部发挥,板桩墙的底端可能有少量向前位移的现象发生。此时板桩墙前后的被动和主动土压移的现象发生。此时板桩墙前后的被动和主动土压力对支锚点的力矩相等,板桩墙体处于极限平衡状力对支锚点的力矩相等,板桩墙体处于极限平衡状态,板桩墙可看做在支锚点铰支而下端自由的结构。态,板桩墙可看做在支锚点铰支而下端自由的结构。2 2)假设在)假设在C C点切开,认为点切开,认为ACAC段为一简支梁,段为一简支梁,即等值梁即等值梁ACAC。根据平衡方程计算支点反。根据平衡方程计算支点反力力T T和和C C点剪力点剪力
11、P P0 0。3 3)取板桩墙下段)取板桩墙下段CECE为隔离体,可求出有效为隔离体,可求出有效嵌固深度嵌固深度t t而板桩墙在基坑底以下的入土深度而板桩墙在基坑底以下的入土深度D D 4 4)由等值梁)由等值梁ACAC求算最大弯矩。求算最大弯矩。0EM)(60apKKPttKxDt.minn计算方法是计算方法是“等值梁等值梁法法”。n等值梁法的关键是等值梁法的关键是如何如何确定反弯点的位置。确定反弯点的位置。n对单锚或单撑支护结构,对单锚或单撑支护结构,地面以下土压力为零的地面以下土压力为零的位置,位置,即主动土压力等即主动土压力等于被动土压力的位置,于被动土压力的位置,与反弯点位置较接近与
12、反弯点位置较接近 。3.6 多道支撑(锚杆)挡土桩墙计算多道支撑(锚杆)挡土桩墙计算 多道(层)支撑(锚杆)挡土桩的计算方法很多,有等值梁法;二分之一分担法;逐层开挖支撑支承力不变法;弹性地基梁法(m法);有限元计算法等。3.6.1 等值梁法等值梁法一、计算步骤一、计算步骤 多道支撑等值梁法计算原理与单道相同,但须计算固端弯矩,求出弯矩后尚须进行分配,最后计算各支点反力。二、工程实例计算二、工程实例计算 北京京城大厦北京京城大厦为超高层建筑,地上52层,地下4层,建筑面积110270m2,地面以上高183.53m,基础深23.76m(设计按23.5m计算),采用进口488mm30mmH型钢桩挡
13、土,桩中间距1.1m,三层锚杆拉结。地质资料如下图所示。对各土层进行加权平均后得:重度=19kN/m3,内摩擦角=300,粘聚力c=10kPa。23m以下为砂卵石,p=350 430,潜水位在23 30m深的圆砾石中,深10m,地面荷载按10kN/m2计算。(一)计算土压力(一)计算土压力系数系数取=(2/3)p=25o,则:Ka=tan2(45o-/2)=tan230o=0.338.1136sin)2536sin(25cos36cos200000PK9.2176.150)(aPaHKKey(二)计算土压力零点(二)计算土压力零点(近似零弯矩点近似零弯矩点)距基坑坑底的距离距基坑坑底的距离y
14、eaH1=qKa=100.33=33kPa eaH2=HKa=1923.5 0.33=147.3kPa eaH=eaH1+eaH1=33+147.3=150.6 kPa (Kp Ka)=19(11.8 0.33)=217.9kN/m3 0.69m(三)绘制基坑支护简图(三)绘制基坑支护简图图3-33 基坑支护简图 图3-34 连续梁计算简图(四)求各支点的荷载集度(四)求各支点的荷载集度(没有考虑c!)qA=qKa=100.33=3.3kN/m2qB=qKa+3.3+1950.33=34.6kN/m2 同理可求:qC=78.5kN/m2qD=116.2kN/m2qE=150.6kN/m2(五)
15、分段计算连续梁各固定端的弯矩(五)分段计算连续梁各固定端的弯矩1.AB段段AB段为悬臂梁MAB=0MBA=3.35(5/2)+(1/2)(34.6-3.3)5(5/3)=171.7kN maKAB_2.BC段梁段梁 梁BC段的受力如下图所示,B支点荷载q1=qB=34.6kN,C支点荷载q2=qC=78.5kN,由结构力学可求得:269.4 kNm 120)87(221lqqMCBM2128.1711207)5.7886.347(23.CD段梁段梁 CD段梁的受力如下图所示,两端均为固支,将原梯形分布荷载看成一矩形荷载q1=qC =78.5kN和一三角形荷载q2=qD-qC =116.2-78
16、.5=37.7kN的叠加,由结构力学可求得:280.7 kNm 303.4 kNm 3067.371265.783012222 22 1lqlqMCD2067.371265.782012222 22 1lqlqMDC4.DEF段梁段梁 DEF 段梁如下图所示,D 端固定,F 点为零弯矩点,简支。将原多边形分布荷载看成一个矩形分布荷载和两个三角形分布荷载的叠加。q1=qD=116.2kN,q2=150.6-116.2=34.4kN,q3=150.6kN。查得:将a=5.5m,b=0.69m,l=6.19m,q1=116.2kN,q2=34.4kN,q3=150.6kN代入上式,可以计算得到:MD
17、F=-637 kNm)(531 6)(5129824)2(823222221lbbqlalaaqlaaqMDF(六)弯矩分配(六)弯矩分配 1.背景知识背景知识 由结构力学知:以上各式中:MIg是固定端I上的不平衡弯矩;MIk 为会交于固定端I的第k根杆上的分配弯矩;MkIC为会交于固定端I的第k根杆上另一端的弯矩,称为传递弯矩;Ik为会交于固定端I的第k根杆上的弯矩分配系数;CI k称为传递系数;SIk称为劲度系数。在等截面杆件的情况下,各杆的劲度系数和传递系数如下:远端为固定支座时:SIk=4iIk,CIk=1/2=0.5gkkMM II I I I I kkCkMCMjkkSS I II
18、 远端为铰支座时:SIk=3iIk,CIk=0 其中iIk=EI/lIk,并称为杆件的线刚度。在前面的分段计算中得到的固定端C、D的弯矩不能相互平衡,需要继续用刚刚介绍的弯矩分配法来平衡支点C、D的弯矩。2.求分配系数求分配系数 固端C:SCB=3iCB=(3/7)EI,SCD=4iCD=(4/6)EI=(2/3)EI,S C I=SCB+SCD=(23/21)EI =0.391 CD=1-CB=1-0.391=0.609 239232173)21/23()7/3(BCn固端D 与固端C类似,可求得:n DC=0.58,DF=0.423.分配弯矩分配弯矩 由于D点的不平衡力矩MDg=MDC+M
19、DF=303.4 637=-333.6 kNm,C点的不平衡力矩MCg=MCB+MCD=269.4-280.4=-11 kNm。显然应当:首先对D支点进行弯矩分配 MDC=-DC MDg=-0.58 (-333.6)=+193.5 kN m MDF =-DF MDg=-0.42 (-333.6)=+140.1 kN m 由于C点是固支,MDC 将对其产生传递弯矩:MCDC=CDCMDC=0.5 193.5=96.8kN m 而F点是简支,MDF 不会对其产生传递弯矩。再对C支点进行弯矩分配 MCg =MCg+MCDC=(-11)+96.8=86.8 kN m 与其相应的分配弯矩和传递弯矩分别为
20、:MCB=0.39186.8=-33.9 kNm,MCD=0.60986.8=-52.7 kNm MDCC=(1/2)(-52.7)=-26.4 kNm 此时,C点达到了基本平衡,D点又有了新的不平衡弯矩 MDg =MDCC=-26.4 kNm,不过已经小于原先的不平衡弯矩。按照完全相同的步骤,继续依次在结点C和D消去不平衡弯矩,则不平衡弯矩将越来越小。经过若干次同样的计算以后,到传递力矩小到可以忽略不计时,便可停止进行。此时,挡土桩墙已非常接近其真实平衡状态。上述各次计算结果可以用下表清晰表达:表表3-4 B C D F -33.4分 配 系 数 0.3910.609 0.580.42 固
21、端 弯 矩 171.8-1 7 1.8 +269-280.4 +303.4-637 D一次分配传递C一次分配传递D二次分配传递C二次分配传递D三次分配 -33.9 -3.0+96.8 +193.5-52.7 -26.4+7.6 +15.2-4.6 -2.3 +1.3+140.1+11.1+1.0 最后杆端弯矩(近似)171.8-1 7 1.8 232.6-232.6 +485-485 通过以上计算,得到各支点的弯矩为:MB=-171.8 kNmMC=-232.6 kNmMD=-485 kNmMF=0(七)求各支点反力(七)求各支点反力 根据连续梁各支点的弯矩平衡,并参照下图,可以容易求得各支点
22、反力。参照图(a),根据MA=0求RB RB=94.8kN同样,参照图(b),可以求得:RB=114.5 kNRC=281.4kN参照图(c),可以求得:RC=153.6kNRD=430.5kNDF段受力比较复杂,计算时应当小心。参照图(d)8.1715322)3.36.34(52553.35BR根据MF=0,可以列出下式:RD=476kN根据MD=0,可以列出下式:RF=388kN48569.03226.15069.0)69.035.5(24.345.5)69.025.5(5.52.11619.6 DR)5.5369.0(26.15069.035.5224.345.525.55.52.116
23、19.6FRn各支点反力为:209.3kN 435kN 906.5kN RF=388kN 5.1148.94BBBRRR 6.1534.281CCCRRR 4765.430DDDRRR3.6.2 二分之一分担法二分之一分担法n二分之一分担法是多支撑连续梁的一种简化计算方法,计算较为简便。nTerzaghi和Peck根据对柏林和芝加哥等地铁工程基坑挡土结构支撑受力的测定,以包络图为基础,用二分之一分担法将支撑轴力转化为土压力,提出了图3-12所示的土压力分布。反之,如土压力分布已知(设计计算时必须确定土压力分布),则可以用二分之一分担法来计算多道支撑的受力。这种方法不考虑支撑桩、墙的变形,求支撑
24、所受的反力时,直接将土压力、水压力平均分配给每一道支撑,然后求出正负弯矩、最大弯矩,以确定挡土桩的截面及配筋。显然,这种计算简单方便。计算简图如图3-40所示。n如要计算反力R2,只要求出(l1+l2/2)至(l1+l2+l3/2)之内的总土压力,因此计算很方便。(a)弯矩图 (b)轴力图图3-40 二分之一分担法计算简图3.6.3 逐层开挖支撑逐层开挖支撑(锚杆锚杆)支承力不变法支承力不变法n多层支护的施工是先施工挡土桩或挡土墙,然后开挖第一层土,挖到第一层支撑或锚杆点以下若干距离,进行第一层支撑或锚杆施工。然后再挖第二层土,挖到第二层支撑(锚杆)支点下若干距离,进行第二层支撑或锚杆施工。如
25、此循序作业,直至挖到坑底为止。一、方法介绍一、方法介绍n该计算方法假设每层支撑或锚杆安装后,其受力和变形均不因下阶段开挖及支撑设置而改变。(一)计算的假定(一)计算的假定1.支撑荷载不变支撑荷载不变 每层支撑(锚杆)受力后不因下阶段开挖及支撑(锚杆)设置而改变其数值,所以钢支撑需加轴力,锚杆需加预应力。2.支撑位移不变支撑位移不变 下层开挖和支撑对上层支撑变形的影响甚小,可以不予考虑。比如第二层支撑完成后,进行第三层土方开挖和第三道支撑时,就认为第二层支撑变形不再变化。3.对支护桩墙来讲,每层支撑安设后可以看作简单铰支座。根据以上假定,上层支撑(锚杆)设计,要考虑的挖土深度应当直到下层支撑(锚
展开阅读全文