医学电子学课件整理.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《医学电子学课件整理.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医学 电子学 课件 整理
- 资源描述:
-
1、Frequency Ranges of Various Biopotential SignalsCommon biopotential signals As shown in Table 2.1,common biopotential signals span the range dc to 10 kHz.Under ideal conditions,a biopotential amplifier with wideband response would serve most applications.However,the presence of common-mode potential
2、s,electrode polarization,and other interfering signals often obscure the biopotential signal under investigation.As such,the frequency response of a biopotential amplifier should be tuned to the specific spectral content expected from the application at hand.Frequency Ranges of Various Biopotential
3、SignalsFrequency Ranges of Various Biopotential SignalsWIDEBAND BIOPOTENTIAL AMPLIFIER The biopotential amplifier circuit described by the schematic diagrams of Figures 2.2 and 2.3 covers the complete frequency range of commonly recorded biopotentials with high CMR.-3dB bandpass Spectral analysis is
4、 the most common way of determining the bandwidth required to process physiological signals.For a first estimate,however,the rigors of spectral analysis can be avoided simply by evaluating the durations of high-and low-frequency components of the signal.Koide 2019 proposed a method for estimating th
5、e-3dB bandpass based on acceptable distortion.A stereotypical intracellular signalThe duration of the highest-frequency component,tHF,is estimated from a stereotypical signal to be the minimum rise or fall time of a signal variation.The duration of the lowest frequency component,tLF,on the other han
6、d,is measured from the tilt of the baseline or of the lowest-frequency component of interest.Koide illustrated this with an example.Figure 2.1 shows a stereotypical intracellular potential measured from the pacemaker cells in a mammalian heart SA node.In this example,tHF=75 ms and tLF=610 ms.Using t
7、he formulas of Table 2.2,the amplification system must have a 3-dB bandpass of 0.0026 to 41.3 Hz to reproduce the signal with negligible distortion(1%).Acceptable distortion,usually considered to be 5%or less for physiological signals,would require a narrower-3dB bandpass,of 0.013 to 18.7 Hz.Figure
8、2.1 A stereotypical intracellular potential measured from the pacemaker cells in a mammalian heart SA node has a minimum rise time of tHF=75 ms and a tilt of tLF=610 ms.The-3dB bandpass needed to reproduce this signal with 1%distortion is of 0.0026 to 41.3 Hz.Approximate-3dB Frequencies RequiredWide
9、band dc-coupled biopotential amplifier Figure 2.2Figure 2.2 This wideband dc-coupled biopotential amplifier front end covers the complete frequency range of commonly recorded biopotentials.A Burr-Brown INA110AG ICIA is dc-coupled to the electrodes via current-limiting resistors R22 and R23 and IS-1-
10、3.3DP faultcurrent limiters.Capacitors and diodes are used to protect the amplifier from high-frequency currents,such as those used in electrosurgery and ablation procedures as well as from high-voltage transients such as those that may be expected from defibrillation and electrostatic discharge.Fig
11、ure 2.3 The output of the ISO107 isolation amplifier is fed to IC2B,which has its gain selectable through switch SW3.The circuit built around IC2A nulls dc offsets automatically when SW1 is closed.The features of this biopotential amplifier make it an ideal choice for recording cardiac monophasic ac
12、tion potentials(MAPs)using electrodes in direct contact with the heart.AC-COUPLED INSTRUMENTATION BIOPOTENTIALAMPLIFIER FRONT END The circuit of Figure 2.5 embodies the classic implementation of a medium-impedance(10-M)instrumentation biopotential amplifier based on the popular AD521 ICIA by Analog
13、Devices.The gain of this circuit is adjustable between 10 and 1000 and maintains a CMR of at least 110 dB.Figure 2.4 Dc and very low frequency potentials are prevented from propagating beyond the front-end amplifier through a technique commonly referred to as dc rejection.Here,IC4C,together with R11
14、 and C17,are used to offset IC1s reference to suppress a baseline composed of components in the range dc to 0.48 Hz.AC-COUPLED INSTRUMENTATION BIOPOTENTIALAMPLIFIER FRONT END The heart of the circuit is IC1,the monolithic IC instrumentation amplifier.Biopotentials are ac-coupled to the amplifiers in
展开阅读全文