高考数学一轮复习 热点难点精讲精析 2.4二次函数.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学一轮复习 热点难点精讲精析 2.4二次函数.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学一轮复习 热点难点精讲精析 2.4二次函数 高考 数学 一轮 复习 热点 难点 精讲精析 2.4 二次 函数 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、 高考一轮复习热点难点精讲精析:2.4二次函数一、求二次函数的解析式1相关链接求二次函数解析式的方法及思路求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:2例题解析【例1】设二次函数f(x)满足f(x-2)=f(-x-2)且图象在y轴上的截距为1,在x轴上截得的线段长为求f(x)的解析式.【方法诠释】二次函数f(x)满足f(x+t)=f(t-x),则其对称轴方程为x=t;图象在x轴上截得的线段长度公式为|x1-x2|,本题可设f(x)的一般式,亦可设顶点式.解析:设f(x)的两零点分别为x1,x2,方法一:设f(x)=ax2+bx+c,
2、则由题知:c=1,且对称轴为x=-2.即b=4a.f(x)=ax2+4ax+1.b=4a=2函数f(x)的解析式为方法二:f(x-2)=f(-x-2),二次函数f(x)的对称轴为x=-2.设f(x)=a(x+2)2+b,且f(0)=1,4a+b=1.f(x)=a(x+2)2+1-4a=ax2+4ax+1,【方法指导】用待定系数法求二次函数的解析式:(1)设一般式是通法;(2)已知顶点(对称轴或最值),往往设顶点式;(3)已知图象与x轴的两交点,往往设两根式,若选用形式不当,引入的待定系数过多,会加大运算量.【例2】如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上、两点,该抛物线的对称轴
3、x=-1与x轴相交于点,且ABC90,求:(1)直线AB对应函数的解析式;(2)抛物线的解析式.【解析】(1)由已知及图形得:A(4,0),B(0,-4k),(-1,0),又CBA=BOC=90,OB2=COAO.(-4k)2=14, 又由图知k0, 所求直线的解析式为(2)设抛物线的解析式为y=ax2+bx+c,则解得所求抛物线的解析式为二、二次函数图象与性质的应用1相关链接求二次函数最值的类型及解法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)常结合二
展开阅读全文