高中数学《2.1.1平面向量的背景及其基本概念》教案 新人教A版必修4.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学《2.1.1平面向量的背景及其基本概念》教案 新人教A版必修4.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.1.1平面向量的背景及其基本概念 高中数学2.1.1平面向量的背景及其基本概念教案 新人教A版必修4 高中数学 2.1 平面 向量 背景 及其 基本概念 教案 新人 必修 下载 _考试试卷_数学_高中
- 资源描述:
-
1、第1课时2.1 平面向量的实际背景及基本概念教学目标:1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学
2、习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教 具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、情景设置:ABCD如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习: (一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量
3、的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系? (三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小. A(起点) B(终点)a2.向量的表示方法:用有向线段表示;用字母、(黑体,印刷用)等表示;用有向线段的起点与终点字母:;向量的大小长度称为向量的模,记作|. 3.有向线段:具有方向
4、的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.说明:(1)综合、才是平行向量的完整定义;(2)向量、平行,记作.6、相
5、等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固: 例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必
6、定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)例3下列命题正确的是( )A.与共线,与共线,则与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形
展开阅读全文