书签 分享 收藏 举报 版权申诉 / 10
上传文档赚钱

类型高中数学《2.1.1平面向量的背景及其基本概念》教案 新人教A版必修4.doc

  • 上传人(卖家):宝宝乐园
  • 文档编号:4805813
  • 上传时间:2023-01-13
  • 格式:DOC
  • 页数:10
  • 大小:429.24KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学《2.1.1平面向量的背景及其基本概念》教案 新人教A版必修4.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2.1.1平面向量的背景及其基本概念 高中数学2.1.1平面向量的背景及其基本概念教案 新人教A版必修4 高中数学 2.1 平面 向量 背景 及其 基本概念 教案 新人 必修 下载 _考试试卷_数学_高中
    资源描述:

    1、第1课时2.1 平面向量的实际背景及基本概念教学目标:1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学

    2、习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教 具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、情景设置:ABCD如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习: (一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量

    3、的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系? (三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小. A(起点) B(终点)a2.向量的表示方法:用有向线段表示;用字母、(黑体,印刷用)等表示;用有向线段的起点与终点字母:;向量的大小长度称为向量的模,记作|. 3.有向线段:具有方向

    4、的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.说明:(1)综合、才是平行向量的完整定义;(2)向量、平行,记作.6、相

    5、等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固: 例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必

    6、定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)例3下列命题正确的是( )A.与共线,与共线,则与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形

    7、的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若与不都是非零向量,即与至少有一个是零向量,而由零向量与任一向量都共线,可有与共线,不符合已知条件,所以有与都是非零向量,所以应选C.例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、相等的向量.变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?()课堂练习:1判断下列命题是否正确,若不正确,请简述理由.向量与是共线向量,则A、B、C、D四点

    8、必在一直线上;单位向量都相等;任一向量与它的相反向量不相等;四边形ABCD是平行四边形当且仅当 一个向量方向不确定当且仅当模为0;共线的向量,若起点不同,则终点一定不同.解:不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.不正确.单位向量模均相等且为1,但方向并不确定.不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. 、正确.不正确.如图与共线,虽起点不同,但其终点却相同.2书本88页练习三、小结 :1、 描述向量的两个指标:模和方向.2、 平行向量不是平面几何中的平行线段的简单类比.3、 向量的图示,要标上箭头和始点、终点.四、课后作业:

    9、书本88页习题2.1第3、5题高一数学测试题一 选择题:本大题共l0小题,每小题5分,满分50分在每小题给出的四个选项中只有一项是符合题目要求的1设集合x0,B=x|-1x3,则AB=( )A-1,0 B-3,3 C0,3 D-3,-12.下列图像表示函数图像的是( )A B C D3. 函数的定义域为( )A(5,) B5,C(5,0) D (2,0)4. 已知,则的大小关系是( )A B C D 5.函数的实数解落在的区间是( ) 6.已知则线段的垂直平分线的方程是( ) 7. 下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于

    10、另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在RtABC中,ABC=90,P为ABC所在平面外一点PA平面ABC,则四面体P-ABC中共有( )个直角三角形。 A 4 B 3 C 2 D 19.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于() A B C D 10 .在圆上,与直线的距离最小的点的坐标为( ) 二 填空题本大题共4小题,每小题5分,满分20分11.设,则的中点到点的距离为 .12. 如果一个几何体的三视图如右图所示(单位长度:cm), 则此几何体的表面积是 .13.设函数在R上是减函数,则的范围是 .1

    11、4.已知点到直线距离为,则= .三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤15. (本小题满分10分)求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).16. (本小题满分14分)如图,的中点.(1)求证:;(2)求证:; 17. (本小题满分14分)已知函数(14分)(1)求的定义域;(2)判断的奇偶性并证明;18. (本小题满分14分)当,函数为,经过(2,6),当时为,且过(-2,-2),(1)求的解析式;(2)求;(3)作出的图像,标出零点。19. (本小题满分14分)已知圆:,(1)求过点的圆的切线方程;(2)点为圆上任意一点,求的最值。2

    12、0.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1) 写出月销售量Q(百件)与销售价格P(元)的函数关系。(2) 该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3) 当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。答案一选择(每题5分) 1-5 A C A C B 6-10 B D A B C二填空(每题5分) 11. 12. 13. 14. 1或-3三解答题15.(10分) 16.(14分) (1)取1分 为中点, (2)17.(14分)(1)由对数

    13、定义有 0,(2分)则有(2)对定义域内的任何一个,1分都有, 则为奇函数4分18.14分(1).6分(2) 3分(3)图略3分. 零点0,-12分19.14分(1)设圆心C,由已知C(2,3) , 1分AC所在直线斜率为, 2分则切线斜率为,1分则切线方程为。 2分(2)可以看成是原点O(0,0)与连线的斜率,则过原点与圆相切的直线的斜率为所求。1分圆心(2,3),半径1,设=k,1分则直线为圆的切线,有,2分解得,2分 所以的最大值为,最小值为 2分20.14分(1) 4分(2)当时,1分即,解得,故; 2分当时, 1分即,解得,故。2分所以(4) 每件19.5元时,余额最大,为450元。4分10

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学《2.1.1平面向量的背景及其基本概念》教案 新人教A版必修4.doc
    链接地址:https://www.163wenku.com/p-4805813.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库