高中数学 1课时 三角形中的有关问题练习题 北版必修5.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学 1课时 三角形中的有关问题练习题 北版必修5.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 1课时 三角形中的有关问题练习题 北版必修5 课时 三角形 中的 有关 问题 练习题 必修 下载 _考试试卷_数学_高中
- 资源描述:
-
1、高二数学 第1课时 三角形中的有关问题考纲导读(一)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题(二) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题知识网络高考导航正弦定理、余弦定理及利用三角公式进行恒等变形的能力以化简、求值或判断三角形的形状为主解三角形常常作为解题工具用于立体几何中的计算或证明基础过关第1课时 三角形中的有关问题1正弦定理: 利用正弦定理,可以解决以下两类有关三角形的问题: 已知两角和一边,求其他两边和一角; 已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角2余弦定理: 利用余弦定理,可以
2、解决以下两类有关三角形的问题 已知三边,求三角; 已知两边和它们的夹角,求第三边和其它两个角3三角形的面积公式: 典型例题例1. 在ABC中,已知a,b,B45,求角A、C及边c解 A160 C175 c1A2120 C215 c2变式训练1:(1)的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则 ( )A B C D解:B 提示:利用余弦定理(2)在ABC中,由已知条件解三角形,其中有两解的是 ( )A.B. C.D. 解:C 提示:在斜三角形中,用正弦定理求角时,若已知小角求大角,则有两解;若已知大角求小角,则只有一解(3)在ABC中,已知,则的值为( )A B C
3、或 D 解:A 提示:在ABC中,由 知角B为锐角(4)若钝角三角形三边长为、,则的取值范围是 解: 提示:由可得(5)在ABC中,= 解:提示:由面积公式可求得,由余弦定理可求得解:应用正弦定理、余弦定理,可得a=,所以b(a2b2)+c(a2c2)=bc(b+c).所以(b+c)a2=(b3+c3)+bc(b+c).所以a2=b2bc+c2+bc.所以a2=b2+c2.所以ABC是直角三角形.例3. 已知在ABC中,sinA(sinBcosB)sinC0,sinBcos2C0,求角A、B、C解:由sinA(sinBcosB)sinC0,得sinAsinBsinAcosBsin(AB)0,所
4、以sinB(sinAcosA)0B(0, ), sinB0, cosAsinA,由A(0, ),知A从而BC,由sinBcos2C0得sinBcos2(B)0cos(2B)cos2(2B)cos(2B)sin2B得sinBsin2B0,亦即sinB2sinBcosB0,由此各cosB,B,CA B C变式训练3:已知ABC中,2(sin2Asin2C)=(ab)sinB,ABC外接圆半径为.(1)求C;(2)求ABC面积的最大值.解:(1)由2(sin2Asin2C)=(ab)sinB得2()=(ab).又R=,a2c2=abb2.a2+b2c2=ab.cosC=.又0C180,C=60.(2
5、)S=absinC=ab=2sinAsinB=2sinAsin(120A)=2sinA(sin120cosAcos120sinA)=3sinAcosA+sin2A=sin2Acos2A+=sin(2A30)+.当2A=120,即A=60时,Smax=.例4. 如图,已知ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过ABC的中心G设MGA()(1)试将AGM、AGN的面积(分别记为S1与S2)表示为的函数;(2)求y的最大值与最小值解 (1) AG, 由正弦定理得,ANCBDMG(,(2)当当变式训练4:在在ABC中,所对的边分别为,且(1)求的值;(2)若,求的最大值
展开阅读全文