高中数学《 3.4 基本不等式 》教案3 新人教A版必修5.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学《 3.4 基本不等式 》教案3 新人教A版必修5.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.4 基本不等式 高中数学 3.4 基本不等式 教案3 新人教A版必修5 高中数学 基本 不等式 教案 新人 必修 下载 _考试试卷_数学_高中
- 资源描述:
-
1、课题:3.4基本不等式(3)主备人:执教者:【学习目标】1知识与技能:进一步掌握基本不等式;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;2过程与方法:通过例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。3情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【学习重点】掌握基本不等式,会用此不等式证明不等式,会用此不等式求某些函数的最值【学习难点】利用此不等式求函数的最大、最小值。【授课类型】 新授课【学习方法】 诱思探究【学习过程】1.课题导入1基本不等式:如果a,b是
2、正数,那么2用基本不等式求最大(小)值的步骤。2.讲授新课1)利用基本不等式证明不等式例1 已知m0,求证。思维切入因为m0,所以可把和分别看作基本不等式中的a和b, 直接利用基本不等式。证明因为 m0,,由基本不等式得当且仅当=,即m=2时,取等号。规律技巧总结 注意:m0这一前提条件和=144为定值的前提条件。3.随堂练习11、已知a,b,c,d都是正数,求证.2、求证.例2 求证:.思维切入 由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a,而左边.这样变形后,在用基本不等式即可得证.证明 当且仅当=a-3即a=5时,等号成立.规律技巧总结 通过加减项的方法配凑成
3、基本不等式的形式.2)利用不等式求最值例3 (1) 若x0,求的最小值; (2)若x0和=36两个前提条件;(2)中x0来转化.解L1) 因为 x0 由基本不等式得,当且仅当即x=时, 取最小值12.(2)因为 x0, 由基本不等式得:,所以 .当且仅当即x=-时, 取得最大-12.规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.随堂练习21、 求(x5)的最小值.2、若x0,y0,且,求xy的最小值.4.课时小结用基本不等式证明不等式和求函数的最大、最小值。5.作业证明:若,则为何值时有最小值,最小值为几? 同步学案3.4(3)个性设计课后反思:高一数学测试题一
展开阅读全文