书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型高中数学 3.2函数模型及应用同步辅导 新人教A版必修1.doc

  • 上传人(卖家):宝宝乐园
  • 文档编号:4805739
  • 上传时间:2023-01-13
  • 格式:DOC
  • 页数:18
  • 大小:1,006.33KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学 3.2函数模型及应用同步辅导 新人教A版必修1.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学 3.2函数模型及应用同步辅导 新人教A版必修1 3.2 函数 模型 应用 同步 辅导 新人 必修 下载 _考试试卷_数学_高中
    资源描述:

    1、第二节 函数模型及应用学点:探究与梳理自主探究:探究问题:(1)如果张红购买了每千克1元的蔬菜千克,需要支付元,把表示为的函数;(2)正方形的边长为,面积为,把表为的函数;(3)某保护区有1个单位面积的湿地,由于保护区的努力湿地每年以5%的增长率增长,经过年后湿地的面积为,把表示为的函数.分别用表格、图象表示上述函数;指出它们属于哪种函数模型;比较它们的增长差异;另外还有哪几种函数模型;探究问题:某市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲每张球台每小时5元,乙按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元,小张准备下

    2、个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.设在甲租一张球台开展活动小时的收费为元,在乙租一张球台开展活动小时的收费为元,试求和.探究问题:某市某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平稳增长,已知2000年为第一年,前4年年产量(万件)如下表表示:12344.005.587.008.44(1)画出20002003年该企业年产量的散点图;建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之。(2)2006年(即)因受到某外国对我国该产量反倾销的影响,年产量将减少30%,试根

    3、据所建立的函数模型,确定2006年的年产量应该约为多少?重点把握研究实际问题时,常需要施以以下一系列过程。(1)阅读理解,认真审题,分析出已知什么,求什么,涉及到哪些知识。(2)建立实际问题中的变量之间的函数关系,从而将实际问题转化为函数问题。(3)运用所学知识研究函数问题,得到函数问题的解。(4)将函数问题的解翻译成实际问题的解,从而解决实际问题。.解题时要分辨清楚量变的本质,以防出错.例如. 某企业的产品成本,前两年每年递增20%,经过引进先进的技术设备,并实施科学管理,后两年的产品成本每年递减20%,则该企业的产品现在的成本与原来相比( )A不增不减B约增8%C约减5%D约减8%分析:此

    4、题容易误选A,认为增加与减少比率相同,从而使结果不变,实际应是,故应选D.解答实际问题时要注意其实际意义.例如.某公司在甲,乙两地销售一种品牌车,利润(单位:万元)分别为和,其中为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A45.606B45.6C46.8D46.806分析:设甲地销售辆,则乙地销售辆.总利润当时,获得最大利润45.606万元.该解答中不为整数,在实际问题中是不可能的,因此当时,获得最大利润万元.故选B题例:解析与点拨例1为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天

    5、)的通话时间(分)与通话费(元)的关系如图所示.(1)分别求出通话费与通话时间之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜.解析:(1)由图象可设,把点分别代入得 (2)令即则当时,两种卡收费一致;当时,即使民卡便宜;当时,即如意卡便宜;点拨:函数的图象是表示函数的三种方法之一,正确识图、用图、译图是解决函数应用题的基本技能和要求,本题运用了待定系数法求函数解析式,然后利用函数解析式解决实际问题。借助函数图象表达题目中的信息,读懂图象是关键。例2 截止到2004年底,我国人口约13亿,如果今后能将人口平均增长率控制在1%,那么经过20年后,我国人口约为多少(精确到亿)?解析

    6、:设经过年后,我国人口数为(亿).2004年底,我国人口约为13亿;经过1年(即2005年),人口数为13+131%13(1+1%)(亿);经过2年(即2006年),人口数为(亿);经过3年(即2007年)人口数为(亿)所以,经过年,人口数为(亿).当时,(亿).所以,经过20年后,我国人口数约为16亿.点拨:经过随年限的变化,总结出人口数与的关系是指数函数的关系,反过来,求增长率,又是关于幂函数的问题变式训练:截止到2004年底,我国人口约13亿,那么经过20年后,保证我国人口数不超过16亿,那么人口平均增长率应控制在什么范围(1%)?例3 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学

    7、家发现,两岁燕子的飞行速度可以表示为函数,单位是m/s,其中Q表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解析:(1)由题知,当燕子静止时,它的速度,代入题给公式可得:解得即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q80代入题给公式得:即当一只燕子的耗氧量是80个单位时,它的飞行速度为15m/s.点拨:直接以对数函数为模型的应用问题不是很多.此类问题一般是先给出对数函数模型,利用对数运算性质求解.例4某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是

    8、仪器的月产量.(1)将利润表示为月产量的函数(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益总成本+利润)解析:(1)设每月产量为台,则总成本为20000+100,从而(2)当时,当时,有最大值25000;当时,是减函数,当时,的最大值为25000.每月生产300台仪器时,利润最大,最大利润为25000元。点拨:在函数应用题中,已知的等量关系是解题的依据,像此题中的利润总收益总成本,又如“销售额销售价格销售数量”等.像几何中的面积、体积公式,物理学中的一些公式等,也常用来构造函数关系.例5 某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件.为了估计

    9、以后每个月的产量,以这三个月的产品数量为依据,用一个函数来模拟该产品的月产量与月份的关系.模拟函数可以选择二次函数或函数(其中为常数),已知4月份该产品的产量为1.37万件,试问用以上哪个函数作为模拟函数较好?并说明理由.解析:设两个函数依题意,有解得(万件).依题意,也有解得 (万件).经比较可知,(万件),比(万件)更接近于4月份的产量1.37万件.选用作为模拟函数较好.点拨:本题考查拟合函数模型问题,先由某些条件确定函数解析式,再验证其它结论是否更接近,不同的函数模型能够刻画现实世界不同的变化规律,函数模型可以处理生产,生活,科技中很多实际问题.学业水平测试巩固基础1.某人从甲地去乙地,

    10、一开始跑步前进,后来步行,图中横轴表示走的时间,纵轴表示甲、乙两地的距离,则较符合该走法的图是( )2.某厂原来月产量为一月份增产10%,二月份比一月份减产10%,设二月份产量为,则( )ABCD无法比较的大小3.工厂生产某种产品的月产量与月份满足关系,现已知该厂今年1月份、2月份生产该产品分别为1万件、1.5万件.则此工厂3月份该产品的产量为 万件.4.某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,则总利润的最大值是 .5.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为(其中为常数,表示时间,单位:小时,表示病毒

    11、个数),则 ,经过5小时,1个病毒能繁殖为 个。6.某商店经销一种洗衣粉,年销售总量为6000包,每包进价为2.8元,销售价为3.4元,全年分若干次进货,每次进货均为包,已知每次进货运输费为62.5元,全年保管费为1.5元,为使利润最大,则 .能力提升7.2008年末,某商店为了吸引顾客,采取“买一百送二十,连环送”的酬宾方式,即顾客在店内花钱满100元(这100元可以是现金,也可以是奖券,或二者合计),就送20元奖励券;满200元就送40元奖励券,以此类推,一位顾客在此商店购物,他所获得的实际优惠实际优惠按( )A一定高于10%B一定低于20%C可以达到20%D可以超过20%8.在不考虑空气

    12、阻力的情况下,火箭的最大速度v(m/s)和燃料的质量M(kg)、火箭(除燃料外)的质量m(kg)的关系是当燃料质量与火箭质量比 .火箭的最大速度可达12km/s?9.如图所示的是某池塘中的浮萍蔓延的面积与时间(月)的关系:,有以下叙述:这个指数函数的底数为2;第5个月时,浮萍面积就会超过30m2;浮萍从4m2蔓延到12需要经过1.5个月;浮萍每月增加的面积都相等;若浮萍蔓延到2,3,6所经过的时间分别为,则其中正确的是 .10.某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A地10台,B地8台,已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地

    13、、B地的运费分别为300元和500元.(1)设从乙地调运台至地,求总运费关于的函数关系式;(2)若总运费不超过 9000元,问共有几种调运方案;(3)求出总运费最低的调运方案及最低运费。11.通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,讲课开始时,学生的注意力迅速集中;中间有一段不太长的时间,学生的注意力保持较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用表示学生掌握和接受概念的能力,表示提出概念和讲授概念的时间(单位:分),可有以下的关系式:(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?(2)如果每隔5分钟测量一次学生

    14、的接受能力,再计算平均值,它能高于45吗?拓展创新12.某个体经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:投资A种商品金额(万元)123456获纯利润(万元)0.651.391.8521.841.40投资B种商品金额(万元)123456获纯利润(万元)0.250.490.7611.261.51该经营者准备下月投入12万元经营这两种产品,但不知投入A,B两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).13.为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放

    15、过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完比后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系为 ;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生能能回到教室.自主发展不同函数模型能够刻画现实世界不同的变化规律。例如:指数函数、对数函数以及幂函数就是常用的描述现实世界中不同增长规律的函数模型,充分理解这三种函数模型的增长差异,体会直线上升、指数爆炸、对数增长等不同函数类型增长的含

    16、义,同时用函数模型解决实际问题的过程中,往往涉及复杂的数据处理,在处理复杂数据的过程中,需要大量使用信息技术,在函数应用的学习中注意充分发挥信息技术的作用。在应用题的各种题型中,有这样一类题型:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题。解答此类题型主要有如下三种方法:(1)直接法:若由题中条件能直接确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;(2)列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;(3)描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可

    17、根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决。第三章第二节参考答案学业水平测试 1.C 2.B 3.1.75 4.2500 5. 1024 6.500 7.B 8. 9.10.(1)依题意得(2)由解得, 共有三种调运方案(3)由一次函数的单调性知,当时,总运费最低,(元),即从乙地调6台给B地,甲地调10台给A地,调2台给B地的调运方案的总运费最低,最低运费为8600元.11.(1)时,故当时,单调递增,最大值为显然,当时,单调递减,因此,开讲后10分钟,学生达到最强的接受能力(值为59),并维持6分钟.(2)所以故

    18、知平均值M不能高于45.12.以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图(如图(1)和(2)观察散点图可以看出,种商品(图(1)的所获纯利润与投资额之间的变化规律可以用二次函数模型进行模拟,取点(4,2)为最高点,则,再把点(1,0.65)代入得:,解得,所以种商品所获纯利润与投资额之间的变化规律是线性的,可以用一次函数模型进行模拟.设取点和(4,1),代入得解得所以即前六个月所获纯利润关于月投资种商品的金额的函数关系式是;前六个月所获纯利润关于月投资种商品的金额的函数关系式是设下月投入两种商品的资金分别为(万元),总利润为W(万元),那么所以当(万元)时,取得最大值,约为

    19、4.1万元,此时(万元).即该经营者下月把12万元中的3.2万元投资A种商品,8.8万元投资B种商品,可获得最大利润约为4.1万元.13.(1)设,由图象知,过点(0.1,1),则由过点(0.1,1)得(2)由得故至少需经过0.6小时.高一数学测试题一 选择题:本大题共l0小题,每小题5分,满分50分在每小题给出的四个选项中只有一项是符合题目要求的1设集合x0,B=x|-1x3,则AB=( )A-1,0 B-3,3 C0,3 D-3,-12.下列图像表示函数图像的是( )A B C D3. 函数的定义域为( )A(5,) B5,C(5,0) D (2,0)4. 已知,则的大小关系是( )A B

    20、 C D 5.函数的实数解落在的区间是( ) 6.已知则线段的垂直平分线的方程是( ) 7. 下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在RtABC中,ABC=90,P为ABC所在平面外一点PA平面ABC,则四面体P-ABC中共有( )个直角三角形。 A 4 B 3 C 2 D 19.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于() A B C D 10 .在圆上,与直线的距离最小的点的坐标为( ) 二 填

    21、空题本大题共4小题,每小题5分,满分20分11.设,则的中点到点的距离为 .12. 如果一个几何体的三视图如右图所示(单位长度:cm), 则此几何体的表面积是 .13.设函数在R上是减函数,则的范围是 .14.已知点到直线距离为,则= .三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤15. (本小题满分10分)求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).16. (本小题满分14分)如图,的中点.(1)求证:;(2)求证:; 17. (本小题满分14分)已知函数(14分)(1)求的定义域;(2)判断的奇偶性并证明;18. (本小题满分14分)当,函数

    22、为,经过(2,6),当时为,且过(-2,-2),(1)求的解析式;(2)求;(3)作出的图像,标出零点。19. (本小题满分14分)已知圆:,(1)求过点的圆的切线方程;(2)点为圆上任意一点,求的最值。20.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1) 写出月销售量Q(百件)与销售价格P(元)的函数关系。(2) 该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3) 当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。答案一选择(每题5分) 1-5 A

    23、C A C B 6-10 B D A B C二填空(每题5分) 11. 12. 13. 14. 1或-3三解答题15.(10分) 16.(14分) (1)取1分 为中点, (2)17.(14分)(1)由对数定义有 0,(2分)则有(2)对定义域内的任何一个,1分都有, 则为奇函数4分18.14分(1).6分(2) 3分(3)图略3分. 零点0,-12分19.14分(1)设圆心C,由已知C(2,3) , 1分AC所在直线斜率为, 2分则切线斜率为,1分则切线方程为。 2分(2)可以看成是原点O(0,0)与连线的斜率,则过原点与圆相切的直线的斜率为所求。1分圆心(2,3),半径1,设=k,1分则直线为圆的切线,有,2分解得,2分 所以的最大值为,最小值为 2分20.14分(1) 4分(2)当时,1分即,解得,故; 2分当时, 1分即,解得,故。2分所以(4) 每件19.5元时,余额最大,为450元。4分18

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学 3.2函数模型及应用同步辅导 新人教A版必修1.doc
    链接地址:https://www.163wenku.com/p-4805739.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库