书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型高三数学强化综合训练试题(四)文.doc

  • 上传人(卖家):宝宝乐园
  • 文档编号:4805675
  • 上传时间:2023-01-13
  • 格式:DOC
  • 页数:19
  • 大小:1MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高三数学强化综合训练试题(四)文.doc》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 强化 综合 训练 试题 下载 _模拟试题_高考专区_数学_高中
    资源描述:

    1、高三强化训练卷文科数学(四)一、选择题1. 若复数满足(是虚数单位),则的共轭复数=( )AB C D2. 已知映射,其中,对应法则,若对实数,在集合A中不存在元素使得,则k的取值范围是( )A B C D 3. 实数满足条件,则的最小值为( )A16B4C1 D4.要得到函数的图像,只需将的图像( )A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D. 向右平移个单位5 .下列命题中正确命题的个数是( )(1)是的充分必要条件;(2)若且,则; (3)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;(4)回归直线一定过样本中心()A4 B3 C2 D16 . 若函

    2、数,又,且的最小值为,则正数的值是( ) A. B. C. D.7. 过双曲线的左焦点,作圆的切线,切点为,延长交双曲线右支于点,若,则双曲线的离心率为( )A BC D8.在等比数列 中,则=( ) A. 2 B. -2 C. D. 9.已知函数的零点,其中常数a,b满足,则n等于 A-1B-2C1D210.若直线被圆截得的弦长为4,则的最小值是 A. B. C. 2 D. 411. 直线()与函数,的图象分别交于、两点,当最小时,值是( )A. B. C. D. 12. 在平行四边形ABCD中,AD=2AB,若P是平面ABCD内一点,且满足(),则当点P在以A为圆心,为半径的圆上时,实数应

    3、满足关系式为( )A BC D二、填空题:本大题共4小题,每小题5分13. 右图所示的程序是计算函数函数值的程序,若输出的值为4,则输入的值是 .INPUT IF THENELSE IF THEN ELSE END IFEND IFPRINT “”; END14. 数列中,若存在实数,使得数列为等差数列,则= 15. 四棱锥的三视图如右图所示,四棱锥的五个顶点都在一个球面上,、分别是棱、的中点,直线被球面所截得的线段长为,则该球表面积为 .16.设函数的定义域为D,若存在非零实数使得对于任意,有,且,则称为M上的高调函数。如果定义域为R的函数是奇函数,当时,且为R上的4高调函数,那么实数a的取

    4、值范围是 。三、解答题17. 已知是的三个内角,且满足,设的最大值为()求的大小;()当时,求的值18. 频率/组距分数50.5数60.5数70.5数80.5数90.5数100.5数(本小题满分12分)从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;(3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.C1A1CB1111.11BD1

    5、9 (本小题满分12分)如图,三棱柱中,面,为的中点.()求证:;()求直线AB与面所成角A正弦值.20. (本小题满分12分)已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,()求椭圆的方程;()过的直线与椭圆交于不同的两点M、N,则MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.21.已知函数()讨论函数在定义域内的极值点的个数;()若函数在处取得极值,对,恒成立,求实数的取值范围;()当且时,试比较的大小请考生在2224三题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。2

    6、2. 圆O是的外接圆,过点C的圆的切线与AB的延长线交于点D,ABCDOAB=BC=3,求BD以及AC的长23.在平面直角坐标系xOy中,圆C的参数方程为(为参数),直线l经过点P(2,2),倾斜角。()写出圆的标准方程和直线l的参数方程;()设l与圆C相交于A、B两点,求的值24. 已知都是正数,且成等比数列,求证: 2013高考模拟试题文科试卷4答案选择题:CDDAB BCAAD BD13. -4,0,4;14. -1 15. 16.17:()由题设及正弦定理知,即由余弦定理知,2分4分因为在上单调递减,所以的最大值为6分()解:设,8分由()及题设知由2+2得,10分又因为,所以,即12

    7、分 18、解:频率分布直方图中,长方形高之比=面积之比=频数之比=频率之比.(1)样本的容量为(1+3+6+4+2)=48 (2)成绩落在70.5,80.5)内的人数最多,频数为,频率为: (3)估计成绩高于60分的学生占总人数的 (12分)19(I)证明:连接B1C,与BC1相交于O,连接OD BCC1B1是矩形,O是B1C的中点又D是AC的中点,OD/AB1AB1面BDC1,OD面BDC1,AB1/面BDC1 (II) 20. 解:(1) 设椭圆方程为=1(ab0),由焦点坐标可得c=11分 由PQ|=3,可得=3,2分解得a=2,b=,分故椭圆方程为=14分(2) 设M,N,不妨0, 0

    8、,设MN的内切圆的径R,则MN的周长=4a=8,(MN+M+N)R=4R因此最大,R就最大,6分,由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,由得+6my-9=0,分得,则AB()=,9分令t=,则t1,则,10分令f(t)=3t+,则f(t) =3-,当t1时,f(t)0,f(t)在1,+)上单调递增,有f(t)f(1)=4, =3,即当t=1,m=0时,=3, =4R,=,这时所求内切圆面积的最大值为.故直线l:x=1,AMN内切圆面积的最大值为12分21. 解:(),当时,在上恒成立,函数 在单调递减,在上没有极值点;当时,得,得,在上递减,在上递增,即在处有极小值当时在

    9、上没有极值点,当时,在上有一个极值点3分()函数在处取得极值,5分令,可得在上递减,在上递增,即7分()证明略ABCDO22、解:由切割线定理得 ,故,解得 (6分)因为,所以 (8分)所以 ,得 (10分)23、解:()圆的标准方程为. 直线的参数方程为,即(为参数) 5分()把直线的方程代入, 得, 所以,即24、证明: 因为成等比数列,所以 又因为都是正数,所以 4分所以 所以, 10分高三强化训练(二)数学(文)试题一.选择题(每小题5分,共60分)1.复数满足,则复数的实部与虚部之差为 ( )A.0 B.1 C.3 D.32. 观察下列各式:51=5,52=25,53=125,54=

    10、625,=3125,=15625,=78125,则的末四位数字为 ( )A3125 B5625 C0625 D81253.数列an是等差数列,其前n项和为Sn,若平面上的三个不共线的向量满足且A、B、C三点共线,则S2012=( )A1006B1010C2006D20104.不等式且对任意都成立,则的取值范围为 ( )A B C D 5.已知向量,若,则等于( )A. B. C. D. 6. 在区间上任取两个实数,则函数在区间上有且只有一个零点的概率是 ( )A. B. C. D.7. 等比数列中,=4,函数,则 ( )A B. C. D. 8.下图a是某市参加2012年高考的学生身高条形统计

    11、图,从左到右的各条形表示的学生人数依次记为A1、A2、Am 如A2表示身高(单位:cm)在150,155内的学生人数。图b是统计图a中身高在一定范围内学生人数的一个算法流程图。现要统计身高在160180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 ( )A9 B8 C7 D69.定义:数列,满足d为常数,我们称为等差比数列,已知在等差比数列中,则的个位数 ( ) A,3 B,4 C,6 D,810. 已知抛物线与双曲线有相同的焦点F,点A是两曲线的交点,且AF轴,则双曲线的离心率为 ( )A B C D11. 的图像关于对称,且当时,(其中是的导函数)

    12、,若,则的大小关系是 ( )A. B. C. D. 12.在直角坐标平面上的点集,那么的面积是 ( )A B C D二.填空题(每小题5分,共20分)13. 在ABC中,角A、B、C所对的边分别为a、b、c。若a、b、c成等差数列,则 。14.已知某个几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_cm3。15.已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为 _。16. 已知函数的对称中心为M,记函数的导函数为, 的导函数为,则有。若函数,则可求得: .三、解答题,本大题共5小题,满分60分. 解答须写出文字说明,证明过程或演算步骤. 1

    13、7.(本小题满分12分) 设的内角所对的边长分别为,且(1)求的值;(2)求的最大值。PABCDE18. (本小题满分12分)如图,四棱锥PABCD的底面ABCD是直角梯形,DABABC90o,PA底面ABCD,PAABAD2,BC1,E为PD的中点(1) 求证:CE平面PAB;(2) 求PA与平面ACE所成角的正弦值;19.(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数

    14、如下表所示:支持保留不支持20岁以下80045020020岁以上(含20岁)100150300()在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;()在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率20.(本小题满分12分)设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的最大值和最小值;(2)设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围。21.(本小题满分12分)已知函数f(x)=ex-1-x(1)求y=f(x)在点(1,f(

    15、1)处的切线方程;(2)当x时,f(x)恒成立,求的取值范围。请从第(22)、(23)、(24)三题中任选一题做答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。22、(本小题满分10分)选修4-1:几何证明选讲 如图,是内接于O,直线切O于点,弦,与相交于点(1) 求证:;(2)若,求。23(本小题满分10分)选修44:坐标系与参数方程 以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。(1) 写出直线的参数方程和圆的极坐标方程

    16、;(2)试判定直线和圆的位置关系。24. (本小题满分10分)选修45:不等式选讲已知函数。(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若存在实数使成立,求实数m的取值范围。参考答案一.选择题1.A 2.D 3.A 4. B 5. B 6. D 7. C 8 .B 9.C 10. B 11.C 12.C二.填空题13. ,14. , 15. ,16.-8046 三、解答题17.解析:(1)在中,由正弦定理及可得即,则(2)由得18题图当且仅当时,等号成立,故当时,的最大值为.18.解(1). 证明:取PA的中点F,连结FE、FB,则FEBC,且FEADBC,BCEF是平行四边形

    17、,CEBF,而BF平面PAB,CE平面PAB(2) 解:取 AD的中点G,连结EG,则EGAP,问题转为求EG与平面ACE所成角的大小.又设点G到平面ACE的距离为GH,H为垂足,连结EH,则GEH为直线EG与平面ACE所成的角现用等体积法来求GH VEAGCSAGCEG,又AE,ACCE,易求得SAEC,VGAEC GHVEAGC,GH在RtEHG中,sinGEH,即PA与平面ACE所成的角正弦值为 19.解:(2)设所选取的人中,有人20岁以下,则,解得.6分也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A1,A2;B1,B2,B3,则从中任取2人的所有基本事件为 (A1,B1)

    18、,(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2),(B1 ,B2),(B2 ,B3),(B1 ,B3)共10个. 8分其中至少有1人20岁以下的基本事件有7个:(A1, B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2), 10分所以从中任意抽取2人,至少有1人20岁以下的概率为. 12分20. 解:(1)解法一:易知所以,设,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)(2)显然直线不满足题设条

    19、件,可设直线,联立,消去,整理得:由得:或又,又,即 故由、得或21.解(1)在处的切线方程为即 2分 (2)由已知得时,恒成立,设 由先证知当且仅当时等号成立,故,从而当即时,为增函数,又于是当时,即,时符合题意. 由可得从而当时,故当时,为减函数,又于是当时,即故不符合题意.综上可得的取值范围为 。12分选做题答案:22解:(1)在ABE和ACD中, ABE=ACD 2分又BAE=EDC BD/MN EDC=DCN直线是圆的切线,DCN=CAD BAE=CAD(角、边、角) 5分(2)EBC=BCM BCM=BDCEBC=BDC=BAC BC=CD=4又BEC=BAC+ABE=EBC+ABE=ABC=ACB BC=BE=4 8分设AE=,易证 ABEDEC 又 .10分23.解:(1)直线的参数方程是,(为参数)圆的极坐标方程是。 .5分(2)圆心的直角坐标是,直线的普通方程是,圆心到直线的距离,所以直线和圆相离。10分24.解:(1)由(2)由(1)知 19

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高三数学强化综合训练试题(四)文.doc
    链接地址:https://www.163wenku.com/p-4805675.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库