湘教版数学八年级下册第1章直角三角形1.2直角三角形的性质与判定Ⅱ第1课时习题课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《湘教版数学八年级下册第1章直角三角形1.2直角三角形的性质与判定Ⅱ第1课时习题课件.ppt》由用户(爱会流传)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版 数学 年级 下册 直角三角形 1.2 性质 判定 课时 习题 课件 下载 _八年级下册_湘教版(2024)_数学_初中
- 资源描述:
-
1、 1.2 直角三角形的性质和判定() 第1课时 1.1.掌握勾股定理掌握勾股定理, ,知道直角三角形三边之间的关系知道直角三角形三边之间的关系. . 2.2.会运用勾股定理进行有关计算会运用勾股定理进行有关计算.(.(重点、难点重点、难点) ) 一、勾股定理一、勾股定理 1.1.借助方格纸画一个直角三角形借助方格纸画一个直角三角形, ,使其两直角边分别是使其两直角边分别是3cm,4cm,3cm,4cm, 通过测量通过测量, ,其斜边为其斜边为_cm._cm. 2.2.如图如图, ,四边形均是正方形四边形均是正方形( (小正方形网格边长均为小正方形网格边长均为1),S1),SA A=_,=_,
2、S SB B=_,S=_,SC C=25,=25,则它们的面积之间满足则它们的面积之间满足:_.:_. 5 5 1616 9 9 S SA A+S+SB B=S=SC C 【总结总结】勾股定理勾股定理: :直角三角形两直角边直角三角形两直角边a,ba,b的的_, ,等于斜等于斜 边边c c的的_, ,即即_. . 平方和平方和 平方平方 a a2 2+b+b2 2=c=c2 2 二、勾股定理的拼图验证二、勾股定理的拼图验证 如图如图, ,将将4 4个非等腰的直角三角形拼成一个个非等腰的直角三角形拼成一个 大的正方形大的正方形. . 1.1.拼得大正方形的边长为拼得大正方形的边长为_,_,则它的
3、面积则它的面积 是是: _;: _;大正方形的面积还可以表示为大正方形的面积还可以表示为_+4_+4_._. 2.2.由它们的面积关系可得由它们的面积关系可得_=_+4_=_+4_,_,整理得整理得_._. 1 ab 2 1 ab 2 a+ba+b (a+b)(a+b)2 2 c c2 2 (a+b)(a+b)2 2 c c2 2 a a2 2+b+b2 2=c=c2 2 ( (打“打“”或“”或“”)”) (1)(1)一个直角三角形的两边长分别是一个直角三角形的两边长分别是3 3和和4,4,则第三边长为则第三边长为5.5. ( )( ) (2)(2)如果如果ABCABC中中,C=90,C=9
4、0, ,那么那么ABAB2 2+BC+BC2 2=AC=AC2 2. . ( )( ) (3)(3)勾股定理适用于任意的直角三角形勾股定理适用于任意的直角三角形. . ( )( ) (4)(4)在直角三角形中在直角三角形中, ,任意两边的平方和等于第三边的平方任意两边的平方和等于第三边的平方. . ( )( ) 知识点知识点 1 1 勾股定理的证明勾股定理的证明 【例例1 1】利用四个如图利用四个如图1 1所示的直角三角形所示的直角三角形, ,拼出如图拼出如图2 2所示的图所示的图 形形, ,验证勾股定理验证勾股定理. . 【思路点拨思路点拨】利用图形间的数量关系利用图形间的数量关系“大正方形
5、面积大正方形面积= =四个直四个直 角三角形面积角三角形面积+ +小正方形面积小正方形面积”来验证来验证. . 【自主解答自主解答】如题干图所示如题干图所示, ,在图在图2 2中中, ,利用图利用图1 1边长为边长为a,b,ca,b,c的的 四个直角三角形拼成一个以四个直角三角形拼成一个以c c为边长的正方形为边长的正方形, ,则图则图2 2中的小正中的小正 方形的边长为方形的边长为(b(b- -a),a),面积为面积为(b(b- -a)a)2 2, ,四个直角三角形的面积为四个直角三角形的面积为 4 4 ab=2ab.ab=2ab.由图由图2 2可知可知, ,大正方形的面积大正方形的面积=
6、=四个直角三角形的四个直角三角形的 面积面积+ +小正方形的面积小正方形的面积, ,即即c c2 2=(b=(b- -a)a)2 2+2ab,+2ab,则则a a2 2+b+b2 2=c=c2 2问题得证问题得证. . 1 2 【总结提升总结提升】勾股定理的证明勾股定理的证明 勾股定理的证明方法很多勾股定理的证明方法很多, ,通过对图形的割补、拼接等方法通过对图形的割补、拼接等方法, ,利利 用图形面积之间的关系进行证明用图形面积之间的关系进行证明, ,也可把直角三角形放在方格也可把直角三角形放在方格 中中, ,通过数格子、计算或用面积方法证明通过数格子、计算或用面积方法证明. . 知识点知识
7、点 2 2 勾股定理的应用勾股定理的应用 【例例2 2】如图如图, ,在在ABCABC中中,ACB=90,ACB=90, , CDAB,DCDAB,D为垂足为垂足,AC=2.1,AB=3.5.,AC=2.1,AB=3.5. 求求:(1)BC:(1)BC的长的长. . (2)(2)ABCABC的面积的面积. . (3)(3)斜边斜边ABAB上的高上的高CDCD的长的长. . (4)(4)斜边被分成的两部分斜边被分成的两部分ADAD和和BDBD的长的长. . 【思路点拨思路点拨】(1)(1)勾股定理勾股定理BCBC2 2=AB=AB2 2- -ACAC2 2BC.BC. (2)(2)两直角边的积的
8、一半两直角边的积的一半ABCABC的面积的面积. . (3)(3)ABCABC面积的两种表示方法面积的两种表示方法 ACACBC= ABBC= ABCDCD.CDCD. (4)(4)勾股定理勾股定理ADAD2 2=AC=AC2 2- -CDCD2 2BD=ABBD=AB- -AD.AD. 1 2 1 2 【自主解答自主解答】(1)BC(1)BC2 2=AB=AB2 2- -ACAC2 2=3.5=3.52 2- -2.12.12 2=2.8=2.82 2, ,所以所以BC=2.8.BC=2.8. (2)S(2)S ABCABC= = ACACBC=BC= 2.12.12.8=2.94.2.8=
9、2.94. (3)(3)由三角形的面积公式得由三角形的面积公式得 ACACBC=BC= ABABCD,CD, 所以所以 2.12.12.8=2.8= 3.53.5CD,CD,解得解得CD=1.68.CD=1.68. 1 2 1 2 1 2 1 2 1 2 1 2 (4)(4)在在RtRtACDACD中中, ,由勾股定理得由勾股定理得:AD:AD2 2+CD+CD2 2=AC=AC2 2, , 所以所以ADAD2 2=AC=AC2 2- -CDCD2 2=2.1=2.12 2- -1.681.682 2 =(2.1+1.68)(2.1=(2.1+1.68)(2.1- -1.68)1.68) =3
10、.78=3.780.420.42 =2=21.891.892 20.210.21 =2=22 29 90.210.210.21,0.21, 所以所以AD=2AD=23 30.21=1.26.0.21=1.26. 所以所以BD=ABBD=AB- -AD=3.5AD=3.5- -1.26=2.24.1.26=2.24. 【总结提升总结提升】运用勾股定理求解线段长度问题的运用勾股定理求解线段长度问题的“四步法四步法” 1.1.找直角找直角: :找出图中的直角三角形找出图中的直角三角形, ,或作辅助线构造直角三角形或作辅助线构造直角三角形. . 2.2.定关系定关系: :找出所求线段与直角三角形三边的
11、关系找出所求线段与直角三角形三边的关系. . 3.3.计算计算: :根据勾股定理计算相关线段的平方根据勾股定理计算相关线段的平方. . 4.4.求值求值: :估算所求数值是哪个数的平方估算所求数值是哪个数的平方, ,然后确定线段长度然后确定线段长度. . 知识点知识点 3 3 利用勾股定理解决实际问题利用勾股定理解决实际问题 【例例3 3】如图如图, ,在公路在公路ABAB旁有一座山旁有一座山, , 现有一现有一C C处需要爆破处需要爆破, ,已知点已知点C C与公路与公路 上的停靠站上的停靠站A A距离为距离为300m,300m,与公路上与公路上 另一停靠站另一停靠站B B的距离为的距离为4
12、00m,400m,且且CACB,CACB,为了安全起见为了安全起见, ,爆破点爆破点C C 周围半径周围半径250m250m范围内不得进入范围内不得进入, ,问在进行爆破时问在进行爆破时, ,公路公路ABAB段是否段是否 因有危险而需要暂时封锁因有危险而需要暂时封锁? ? 【思路点拨思路点拨】要判断公路要判断公路ABAB段是否需要封锁段是否需要封锁需要计算点需要计算点C C到到 ABAB的距离与的距离与250m250m的大小关系的大小关系借助勾股定理和三角形的面积计借助勾股定理和三角形的面积计 算点算点C C到到ABAB的距离的距离. . 【自主解答自主解答】过点过点C C作作CDABCDAB
13、于于D.D. 因为因为BC=400m,AC=300m,ACB=90BC=400m,AC=300m,ACB=90, , 根据勾股定理根据勾股定理, ,得得ACAC2 2+BC+BC2 2=AB=AB2 2, ,即即3003002 2 +400+4002 2=AB=AB2 2, ,所以所以AB=500m.AB=500m. 由三角形的面积可知由三角形的面积可知: AB: ABCD= BCCD= BCAC,AC,所以所以500500CD=CD= 400400300,300,所以所以CD=240m.CD=240m. 因为因为240250,240250,即点即点C C到到ABAB的距离小于的距离小于250
14、m,250m,所以有危险所以有危险, ,公路公路ABAB 段需要暂时封锁段需要暂时封锁. . 1 2 1 2 【总结提升总结提升】应用勾股定理解决实际问题的步骤应用勾股定理解决实际问题的步骤 1.1.读懂题意读懂题意, ,建立数学模型建立数学模型. . 2.2.分析数量关系分析数量关系, ,数形结合数形结合, ,正确标图正确标图, ,将已知条件体现到图形将已知条件体现到图形 中中, ,充分利用图形的功能和性质充分利用图形的功能和性质. . 3.3.应用勾股定理进行计算或建立等量关系应用勾股定理进行计算或建立等量关系, ,构建方程求解构建方程求解. . 4.4.解决实际问题解决实际问题. . 题
15、组一题组一: :勾股定理的证明勾股定理的证明 1.1.历史上对勾股定理的一种证法采用了右面历史上对勾股定理的一种证法采用了右面 图形图形: :其中两个全等的直角三角形边其中两个全等的直角三角形边AE,EBAE,EB在在 一条直线上一条直线上, ,证明中用到的面积相等关系是证明中用到的面积相等关系是( ( ) ) A.SA.S EDAEDA=S =S CEBCEB B.SB.S EDAEDA+S +S CEBCEB=S =S CDECDE C.SC.S四边形 四边形CDAECDAE=S =S四边形 四边形CDEBCDEB D.SD.S EDAEDA+S +S CDECDE+S +S CEBCEB
展开阅读全文