Lecture-2-管理科学英文版教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《Lecture-2-管理科学英文版教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Lecture 管理科学 英文 教学 课件
- 资源描述:
-
1、Management Science:Operations Research(OR)Chapter 2.3 2.41/10/20231LectureChapter 2.3:Graphical Representation and Solution TechniquelVariables are represented as dimensions,lconstraints are represented as lines(hyperplanes)for equations&halflines(halfspaces)for inequalities1/10/20232LectureExample:
2、3x1+2x2 6lNote:It is not true that“”define halfspaces below the hyperplane&“”constraints define halfspaces above the hyperplane.1/10/20233LectureExample:3x1+2x2 6lNote:If x1=0 and x2=0 Satisfies 6 ThenMark the halfspaces where(0,0)located as our desired halfspaces.Otherwise,Mark the other halfspaces
3、 as our desired halfspaces.1/10/20234LectureTesting with(0,0)x1=0 and x2=0 The feasible setlThe intersection of the halfspaces&hyperplanes of all constraints in the problemlExample:Max z =2x1+3x2 s.t.x1+4x2 12(I)2x1 x2 2(II)5x1+3x2 15(III)4x1+6x2 6(IV)x1 0(V)x2 0(VI)1/10/20235LectureThe shaded area
4、is the feasible set1/10/20236LectureSome observationslThe area is a polytope:a bounded polyhedronlExtreme points A,B,C,D,E,F.lAt each extreme point,some constraints are satisfied as equations.For instance;at C,constraints I&II are satisfied as equations;at F,constraint IV&x2 0.lExact coordinates of
5、extreme points are determined by a system of simultaneous linear equations.1/10/20237LecturelFor instance,at point A:Constraints IV and V are satisfied as equations,i.e.,4x1+6x2=6 x1 =0.lThe system has a solution(x1,x2)=(0,1).l At point C,the constraints I and II are binding,so that the system isx1+
6、4x2=12I2x1 x2=2.IIlThe system has a solution(x1,x2)=(4/9,26/9).1/10/20238LectureIn summaryPointBinding Constraints Coordinates(x1,x2)z-valueAIV,V(0,1)3BII,V(0,2)6CI,II (.4444,2.8889)9.5556DI,III (1.4118,2.6471)10.7649EIII,VI(3,0)6FIV,VI(1,0)3)2,(9894)2,1(17111771/10/20239LecturelNow the objective fu
7、nction:Max z=2x1+x2.The parameter z is called the value of the objective function(or simply objective value)lFor now,ignore“Max.”Then z=2x1+x2 is a constraint with unknown right-hand side value.1/10/202310LectureIso-profit(or iso-cost)lines,contour linesThe gradient(or direction)of the objective fun
8、ction is perpendicular to the iso-profit lines.1/10/202311LectureHow to find the gradient?Examples:(a)Max z1=4x1 3x2(b)Max z2=x1+3x2(c)Min z3=2x1 x2(d)Min z4=2x1+3x2 1/10/202312LectureGraphical solution procedurel(1)Graph the constraints and determine the set of feasible solutions.l(2)Plot the gradi
9、ent of the objective function.l(3)Apply the graphical solution technique that pushes iso-profit lines into the direction of the gradient until the last feasible point is reached.This is the optimal solution.l(4)Determine which constraints are satisfied as equations at =.Write them as equations and s
10、olve the resulting system of simultaneous linear equations for the exact coordinates of the optimal solution.l(5)Use the coordinates of the optimal point in the objective functions and compute the value of the objective function.1/10/202313LectureAn Example:1/10/202314LectureSolutionlThe last feasib
11、le point towards higher objective values is D.Binding constraints:I&III.Hence,the system of simultaneous linear equations is x1+4x2=125x1+3x2=15.lThe optimal solution is (1.4118,2.6471);the associated value of the objective function is =10.7647.1/10/202315LectureCorner point theoremlTheorem(Corner p
12、oint theorem,Dantzig):At least one optimal solution is located at an extreme point of the feasible set.lDantzigs simplex method:an incremental technique.Feasible(&improving)directions.lSimplex path in our example:either A,B,C,D,or A,F(same value of the objective function),E,D.lIn practice:millions o
13、f possible paths.Which is best,is known only after the fact.lAverage simplex performance:very good;worst-case performance:very poor(Klee-Minty example).Computational complexity.Other techniques,e.g.,interior point methods.1/10/202316LectureNo feasible solutionlReason:incompatibility of the constrain
14、tsModeling error,constraints are too tightExample:2x1+3x2 7(I)x1+x2 3(II)x1 0(III)x2 0.(IV)1/10/202317LecturelHere,the constraints I,II,&III are incompatible.1/10/202318LecturePossible way-outl“Loosen”the constraints by increasing the RHS values of constraints or decreasing the constraints.lHere:eit
15、her decrease b2 by 22%to 2(or lower),or increase b1 to at least 28%to 9,or similar.lAlternatively,simultaneously increase b1 by 14%to 8 and reduce b2 by 11%to 2.67.Such simultaneous changes may be easier to implement.1/10/202319LectureUnbounded“optimal”solutionslConstraints are“too loose.”Often,cons
16、traints have been forgotten.This is an error message.lExample:P:Max z=2x1+x2 s.t.x1 x2 2(I)2x1+x2 1(II)x1,x2 0.1/10/202320LecturelUnbounded“optimal”solutions exist,if the feasible set is unbounded and the gradient of the objective function points into the direction of the opening.1/10/202321LectureD
17、ual degeneracylA“technical”occurrence.Adjacent extreme points have the same objective values.(We normally do not care).lImportant special case:Dual degeneracy at optimum=alternative optimal solutions.1/10/202322LecturelAt extreme points A&D dual degeneracy exists(but neither solution is optimal),whi
18、le dual degeneracy exists at the optimal solutions B&C,so that all points(not only extreme points)between B&C are optimal(alternative optimal solutions).1/10/202323LectureRedundancy.lA constraint is redundant,if it can be deleted without changing the feasible set.lExampleP:3x1+x2 8(I)x1 2(II)x1 x2 3
19、(III)x1+2x2 6(IV)x1,x2 0.1/10/202324LecturelConstraint III is(strongly)redundant,while constraint I is weakly redundant(it has at least one point in common with the feasible set).lIdentification of redundant constraints is usually as difficult as solving the original problem,hence it is typically no
20、t worth determining whether or not a constraint is redundant.1/10/202325LectureChpter.2.4:Postoptimality AnalyseslOnce an optimal solution has been obtained,the natural question is“what(happens),if one(or more of the given)parameter(s)change(s)?”l Two types of changes:l(1)Structural changes(addition
展开阅读全文