书签 分享 收藏 举报 版权申诉 / 29
上传文档赚钱

类型欧氏空间的定义与基本性质课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4779909
  • 上传时间:2023-01-09
  • 格式:PPT
  • 页数:29
  • 大小:648KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《欧氏空间的定义与基本性质课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    空间 定义 基本 性质 课件
    资源描述:

    1、A1A2性质性质(如长度、夹角如长度、夹角)等在一般线性空间中没有涉及等在一般线性空间中没有涉及.其具体模型为几何空间其具体模型为几何空间 、23,RR 1、线性空间中,向量之间的基本运算为线性运算,、线性空间中,向量之间的基本运算为线性运算,但几何空间的度量但几何空间的度量 长度:长度:都可以通过内积反映出来:都可以通过内积反映出来:,cos,夹角夹角 :2、在解析几何中,向量的长度,夹角等度量性质、在解析几何中,向量的长度,夹角等度量性质3、几何空间中向量的内积具有比较明显的代数性质、几何空间中向量的内积具有比较明显的代数性质.A3满足性质:满足性质:,VkR 1(,)(,)2(,)(,)

    2、kk 3(,),(,)4(,)0,当且仅当当且仅当 时时0 (,)0.1.定义定义设设V是实数域是实数域 R上的线性空间,对上的线性空间,对V中任意两个向量中任意两个向量、定义一个二元实函数,记作、定义一个二元实函数,记作 ,若,若,(,)(,)(对称性)(对称性)(数乘)(数乘)(可加性)(可加性)(正定性)(正定性)A4 V为实数域为实数域 R上的线性空间上的线性空间;V除向量的线性运算外,还有除向量的线性运算外,还有“内积内积”运算运算;(,).R 欧氏空间欧氏空间 V是特殊的线性空间是特殊的线性空间则称则称 为为 和和 的的内积内积,并称这种定义了内积的,并称这种定义了内积的(,)实数

    3、域实数域 R上的线性空间上的线性空间V为为欧氏空间欧氏空间.A5例例1在在 中,对于向量中,对于向量 nR 1212,nna aab bb 当当 时,时,1)即为几何空间)即为几何空间 中内积在直角中内积在直角3n 3R 坐标系下的表达式坐标系下的表达式.即即(,).这样这样 对于内积就成为一个欧氏空间对于内积就成为一个欧氏空间.nR(,)易证易证 满足定义中的性质满足定义中的性质.(,)141)定义)定义 1 12 2(,)n na ba ba b (1)所以所以,为内积为内积.(,)A62)定义)定义 1 122(,)2kknna ba bka bna b 从而从而 对于内积也构成一个欧氏

    4、空间对于内积也构成一个欧氏空间.nR(,)由于对由于对 未必有未必有,V (,)(,)注意:注意:所以所以1),),2)是两种不同的内积)是两种不同的内积.从而从而 对于这两种内积就构成了不同的欧氏空间对于这两种内积就构成了不同的欧氏空间.nR易证易证 满足定义中的性质满足定义中的性质.(,)14所以所以 也为内积也为内积.(,)A7例例2 为闭区间为闭区间 上的所有实连续函数上的所有实连续函数(,)C a b,a b所成线性空间,对于函数所成线性空间,对于函数 ,定义,定义(),()f xg x(,)()()baf gf x g x dx (2)则则 对于(对于(2)作成一个欧氏空间)作成一

    5、个欧氏空间.(,)C a b证:证:(),(),()(,),f xg xh xC a bkR 1.(,)()()()()(,)bbaaf gf x g x dxg x f x dxg f 2.(,)()()()()bbaak f gk f x g x dxkf x g x dx (,)k f g A8 3.(,)()()()bafg hf xg xh x dx ()()()()bbaaf x h x dxg x h x dx(,)(,)f hg h 24.(,)()baf ffx dx 2()0,fx (,)0.f f 且若且若()0,f x 则则2()0,fx 从而从而(,)0.f f 故故

    6、 (,)0()0.f ff x 因此,因此,为内积,为内积,为欧氏空间为欧氏空间.(,)f g(,)C a bA9 21)(,)(,),(,)kkkkk 2)(,)(,)(,)推广:推广:11(,)(,)ssiiii 3)(0,)0 2.内积的简单性质内积的简单性质,VkR V为欧氏空间,为欧氏空间,A102)欧氏空间欧氏空间V中,中,,(,)0V 使得使得 有意义有意义.1.1.引入长度概念的可能性引入长度概念的可能性1)在)在 向量的长度(模)向量的长度(模).3R 2.2.向量长度的定义向量长度的定义,(,)V 称为向量称为向量 的的长度长度.特别地,当特别地,当 时,称时,称 为为单位

    7、向量单位向量.1 A111)0;00 3.向量长度的简单性质向量长度的简单性质3)非零向量)非零向量 的单位化:的单位化:1.2)kk(3)A121)在)在 中向量中向量 与与 的夹角的夹角 3R 2)在一般欧氏空间中推广()在一般欧氏空间中推广(4 4)的形式,首先)的形式,首先1.1.引入夹角概念的可能性与困难引入夹角概念的可能性与困难应证明不等式:应证明不等式:(,)1 此即此即,cosarc (4)A13对欧氏空间对欧氏空间V中任意两个向量中任意两个向量 ,有,有、(,)(5)2.2.柯西布涅柯夫斯基不等式柯西布涅柯夫斯基不等式当且仅当当且仅当 线性相关时等号成立线性相关时等号成立.、

    8、证:当证:当 时,时,0 (,0)0,0 结论成立结论成立.(,)0.当当 时,作向量时,作向量 0 ,ttR A14由内积的正定性,对由内积的正定性,对 ,皆有,皆有 tR (,)(,)tt 2(,)2(,)(,)0tt (6)取取 代入(代入(6)式,得)式,得(,)(,)t 22(,)(,)(,)2(,)(,)0(,)(,)即即 2(,)(,)(,)两边开方,即得两边开方,即得 ,.A15当当 线性相关时,不妨设线性相关时,不妨设、k 于是,于是,2(,)(,)(,).kkk 2kk (,).(5)式等号成立式等号成立.反之,若(反之,若(5)式等号成立,由以上证明过程知)式等号成立,由

    9、以上证明过程知 或者或者 ,或者,或者 0 ,0,也即也即 线性相关线性相关.、A161 12 2n na ba ba b,1,2,.iiabRin3.3.柯西布涅柯夫斯基不等式的应用柯西布涅柯夫斯基不等式的应用柯西柯西不等式不等式2222221212nnaaabbb (7)1)A1722()()()()bbbaaaf x g x dxfx dxgx dx 施瓦兹施瓦兹不等式不等式(),()()()baf xg xf x g x dx 由柯西布涅柯夫斯基不等式有由柯西布涅柯夫斯基不等式有(),()()()f x g xf xg x 从而得证从而得证.证:在证:在 中,中,与与 的内积定义为的内

    10、积定义为(,)C a b()()f xg x2)A18(7)证:证:2(,)(,)2(,)(,)2222 两边开方,即得(两边开方,即得(7)成立)成立.对欧氏空间中的任意两个向量对欧氏空间中的任意两个向量 有有,、3)三角三角不等式不等式A19设设V为欧氏空间,为欧氏空间,为为V中任意两非零中任意两非零、向量,向量,的的夹角夹角定义为定义为、4.4.欧氏空间中两非零向量的夹角欧氏空间中两非零向量的夹角定义定义1:(,),cosarc 0,A20 零向量与任意向量正交零向量与任意向量正交.注:注:即即 .,2 cos,0 设设 为欧氏空间中两个向量,若内积为欧氏空间中两个向量,若内积、,0 则

    11、称则称 与与 正交正交或或互相垂直互相垂直,记作,记作 .定义定义2:A215.5.勾股定理勾股定理设设V为欧氏空间,为欧氏空间,,V 222证:证:2,2,222 (,)0 .A22若欧氏空间若欧氏空间V中向量中向量 两两正交,两两正交,12,m 推广:推广:则则 22221212.mm证:若证:若(,)0,ijij 则则 21211(,)mmmijij 1(,)(,)mmiiijiij 222121(,)miimi (,)0,1,2,ijiji jm 即即A23例例3、已知、已知 2,1,3,2,1,2,2,1在通常的内积定义下,求在通常的内积定义下,求,(,),.解:解:2222,213

    12、2183 2 (,)2 11 2322 10 ,2 又又 1,1,5,1 22221151282 7 通常称为与的距离,记作通常称为与的距离,记作 (,).d A24设设V为欧氏空间,为欧氏空间,为为V的一组基,对的一组基,对V中中12,n 任意两个向量任意两个向量1 122nnxxx 1 122nnyyy 令令(,),1,2,.ijijai jn 1111(,)(,)(,)nnnniijjijijijijxyx y (8)A25定义定义:矩阵:矩阵 111212122212(,)(,)(,)(,),(,)(,)(,)(,)nnnnnnA 称为基称为基 的的度量矩阵度量矩阵.12,n 1122

    13、,ijn nnnxyxyAaXYxy (9)则则 11(,)nnijijija x yX AY (10)A26 度量矩阵度量矩阵A是实对称矩阵是实对称矩阵.由内积的正定性,度量矩阵由内积的正定性,度量矩阵A还是正定矩阵还是正定矩阵.事实上,对事实上,对 ,即,即 ,0V 0X 有有(,)0X AX A为正定矩阵为正定矩阵.由(由(10)知,在基)知,在基 下,向量的内积下,向量的内积12,n 由度量矩阵由度量矩阵A完全确定完全确定.A27 对同一内积而言,不同基的度量矩阵是合同的对同一内积而言,不同基的度量矩阵是合同的.证:设证:设 为欧氏空间为欧氏空间V的两组的两组1212,;,nn 基,它们的度量矩阵分别为基,它们的度量矩阵分别为A、B,且,且1212(,)(,)nnC 设设 12,ijnn nCcC CC 1,1,2,nikikkcin 则则A2811(,)(,)nnijkikljlklcc 11(,)nnklkiljklc c 11nnklkiljkla c c ijC AC 于是于是 (,)ijijBC AC 1212,nnCCA C CCC ACC A29欧氏空间欧氏空间V的子空间在所的子空间在所V中定义的内积之下也是中定义的内积之下也是一个欧氏空间,称之为一个欧氏空间,称之为V的的欧氏子空间欧氏子空间.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:欧氏空间的定义与基本性质课件.ppt
    链接地址:https://www.163wenku.com/p-4779909.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库