同济大学高等数学数列的极限优秀课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《同济大学高等数学数列的极限优秀课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济大学 高等数学 数列 极限 优秀 课件
- 资源描述:
-
1、“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1 1、割圆术:、割圆术:播放播放刘徽一、概念的引入第1页/共46页R正六边形的面积1A正十二边形的面积2A正 形的面积126 nnA,321nAAAAS第2页/共46页2 2、截丈问题:、截丈问题:“一尺之棰,日截其半,万世不竭”;211 X第一天截下的杖长为第一天截下的杖长为;212122 X为为第二天截下的杖长总和第二天截下的杖长总和;2121212nnXn 天截下的杖长总和为天截下的杖长总和为第第nnX211 1第3页/共46页二、数列的定义定义定义:按自然数按自然数,3,2,1编号依次排列的一列数编号依次排列的一列
2、数 ,21nxxx (1)称为称为无穷数列无穷数列,简称简称数列数列.其中的每个数称为数其中的每个数称为数列的列的项项,nx称为称为通项通项(一般项一般项).数列数列(1)记为记为nx.例如;,2,8,4,2n;,21,81,41,21n2n21n第4页/共46页注意:注意:1.数列对应着数轴上一个点列.可看作一动点在数轴上依次取.,21nxxx1x2x3x4xnx2.数列是整标函数).(nfxn;,)1(,1,1,11 n)1(1 n;,)1(,34,21,21nnn )1(1nnn ,333,33,3 第5页/共46页.)1(11时的变化趋势时的变化趋势当当观察数列观察数列 nnn播放播放
3、三、数列的极限三、数列的极限第6页/共46页问题:当 无限增大时,是否无限接近于某一确定的数值?如果是,如何确定?nxn.1)1(1,1无限接近于无限接近于无限增大时无限增大时当当nxnnn 问题:“无限接近”意味着什么?如何用数学语言刻划它.1nxnnn11)1(1 通过上面演示实验的观察:第7页/共46页,1001给定给定,10011 n由由,100时时只要只要 n,10011 nx有有,10001给定给定,1000时时只要只要 n,1000011 nx有有,100001给定给定,10000时时只要只要 n,100011 nx有有,0 给定给定,)1(时时只要只要 Nn.1成立成立有有 n
4、x第8页/共46页定义定义 如果对于任意给定的正数如果对于任意给定的正数(不论它多么不论它多么小小),),总存在正数总存在正数N,使得对于使得对于Nn 时的一切时的一切nx,不等式不等式 axn都成立都成立,那末就称常数那末就称常数a是数列是数列nx的极限的极限,或者称数列或者称数列nx收敛于收敛于a,记为记为 ,limaxnn 或或).(naxn如果数列没有极限,就说数列是发散的.注意:注意:;.1的无限接近的无限接近与与刻划了刻划了不等式不等式axaxnn .2有关有关与任意给定的正数与任意给定的正数 N第9页/共46页x1x2x2 Nx1 Nx3x几何解释:2 a aa.)(,),(,落
5、在其外落在其外个个至多只有至多只有只有有限个只有有限个内内都落在都落在所有的点所有的点时时当当NaaxNnn :定义定义N 其中;:每一个或任给的每一个或任给的.:至少有一个或存在至少有一个或存在.,0,0lim axNnNaxnnn恒有恒有时时使使第10页/共46页数列极限的定义未给出求极限的方法.例例1.1)1(lim1 nnnn证明证明证证1 nx1)1(1 nnnn1,0 任给任给,1 nx要要,1 n只要只要,1 n或或所以,1 N取取,时时则当则当Nn 1)1(1nnn就有就有.1)1(lim1 nnnn即即注意:注意:第11页/共46页例例2.lim),(CxCCxnnn 证明证
6、明为常数为常数设设证证Cxn CC ,成立成立 ,0 任给任给所以,0,n对于一切自然数对于一切自然数.limCxnn 说明:常数列的极限等于同一常数.小结:用定义证数列极限存在时,关键是任意给定 寻找N,但不必要求最小的N.,0 第12页/共46页例例3.1,0lim qqnn其中其中证明证明证证,0 任给任给,0 nnqx,lnln qn,lnlnqN 取取,时时则当则当Nn ,0 nq就有就有.0lim nnq,0 q若若;00limlim nnnq则则,10 q若若,lnlnqn 第13页/共46页例例4.lim,0lim,0axaxxnnnnn 求证求证且且设设证证,0 任给任给.l
7、imaxnn 故故,limaxnn ,1 axNnNn时恒有时恒有使得当使得当axaxaxnnn 从而有从而有aaxn a1 第14页/共46页四、数列极限的性质1.有界性定义定义:对数列对数列nx,若存在正数若存在正数M,使得一切自使得一切自然数然数n,恒有恒有Mxn 成立成立,则称数列则称数列nx有界有界,否则否则,称为无界称为无界.例如,;1 nnxn数列数列.2nnx 数列数列数轴上对应于有界数列的点数轴上对应于有界数列的点nx都落在闭区间都落在闭区间,MM 上上.有界无界第15页/共46页定理定理1 1 收敛的数列必定有界.证证,limaxnn 设设由定义,1 取取,1,axNnNn
展开阅读全文