书签 分享 收藏 举报 版权申诉 / 58
上传文档赚钱

类型单因素试验结果的统计分析课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4775565
  • 上传时间:2023-01-09
  • 格式:PPT
  • 页数:58
  • 大小:734KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《单因素试验结果的统计分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    因素 试验 结果 统计分析 课件
    资源描述:

    1、第七章 单因素试验结果的统计分析 单因素随机区组试验结果的方差分析单因素随机区组试验结果的方差分析 单因素拉丁方试验结果的统计分析单因素拉丁方试验结果的统计分析 缺区估计原理及方法缺区估计原理及方法7.1 7.1 单因素随机区组试验结果的方差分析单因素随机区组试验结果的方差分析设有设有A因素有因素有k个处理,重复个处理,重复n次,每一次,每一组合仅有组合仅有1个观察值,则全试验共有个观察值,则全试验共有nk个观察值,其资料类型如下表:个观察值,其资料类型如下表:A 因 素 B 区 组 B1 B2 Bn总计Ti.平均A1A2:AkX11x12X1n T1.T2.Tk.X21x22X2nxk1xk

    2、2xkn总和T.jT.1 T.2 T.k T.平均.2.1kxxxjx.ix.x 组合内只有单个观察值的两向分组资料组合内只有单个观察值的两向分组资料试验因素:试验因素:区组因素:区组因素:由于这类试验往往只研究因素A的处理效应,而划分区组是为提高试验精确度而采用的局部控制手段,它不是一个真正的试验因素,故属单因素试验。单因素随机区组试验:A A因素因素(k(k个处理)个处理)B B因素因素(n(n个区组)个区组)一、一、单因素随机区组的线性模型和期望均方单因素随机区组的线性模型和期望均方 ijjiijebtxx其中,其中,为样本平均数;为样本平均数;为第为第i i处理效应(处理效应(i=1,

    3、2,i=1,2,k);k);为第为第j j区组效应(区组效应(j=1,2,j=1,2,n),n);为随机误差,且相互独立,遵从为随机误差,且相互独立,遵从 分布分布。0,0,0 ijjiebt并满足并满足itjbije),0(2Nx对于对于k k个处理、个处理、n n个区组的单因素随机区组试验(个区组的单因素随机区组试验(数据结构见数据结构见表表),样本中每一个观察值的线性模型为:,样本中每一个观察值的线性模型为:表表7.17.1 单因素随机区组资料的方差分析和期望均方单因素随机区组资料的方差分析和期望均方变异来源变异来源 DFSSMS 期望均方期望均方固定模型固定模型随机模型随机模型区组间区

    4、组间处理间处理间试验误差试验误差n-1k-1(n-1)(k-1)SSbSStSSeMSbMStMSe总变异总变异nk-1SST22222eeenk22222eeenk二、单因素随机区组试验结果分析示例单因素随机区组试验结果分析示例【例7.1】有一烤烟品种产量比较试验,供试品种有有一烤烟品种产量比较试验,供试品种有A A、B B、C C、D D、E E、F F共六个品种,其中共六个品种,其中D D为对照,采用随机为对照,采用随机区组设计,四次重复,小区计产面积区组设计,四次重复,小区计产面积6060其田间排列其田间排列和小区产量如下图,试作分析。和小区产量如下图,试作分析。E13.7C16.6A

    5、15.3F17.0D16.4B18.0A16.2B18.3F17.5D17.8E14.0C17.8A14.9D17.3E13.6B17.6C17.8F17.6F18.2C17.6A16.2E13.9B18.6D17.31 1、试验数据的整理、试验数据的整理 表表7.27.2 品种和区组两向表品种和区组两向表 区组区组 品种品种 Tt.亩产亩产 A B C D E F15.3 14.9 16.2 16.218.0 17.6 18.6 18.316.6 17.8 17.6 17.816.4 17.3 17.3 17.813.7 13.6 13.9 14.017.0 17.6 18.2 17.562

    6、.672.569.868.855.270.315.5618.1317.4517.2013.8017.58173.87201.42193.87191.09152.32195.31Tb.97.0 98.8 101.8 101.6T=399.2 .x63.16x2 2、自由度与平方和的分解、自由度与平方和的分解 自由度的分解:自由度的分解:总自由度总自由度 dfdfT T=nk-1=4=nk-1=46-1=236-1=23区组自由度区组自由度 dfdfb b=n-1=4-1=3=n-1=4-1=3处理自由度处理自由度 dfdft t=k-1=6-1=5=k-1=6-1=5误差自由度误差自由度 dfd

    7、fe e=(n-1)(k-1)=(4-1)(6-1)=15=(n-1)(k-1)=(4-1)(6-1)=15矫正数矫正数 C=TC=T2 2/nk=(399.2)/nk=(399.2)2 2/(4/(4 6)=6640.03 6)=6640.0338.5203.66404)3.705.726.62(2222CnTssttSSSSe e=SS=SST T-SS-SSb b-SS-SSt t=57.05-2.68-52.38=1.99=57.05-2.68-52.38=1.9968.203.66406)6.1018.1018.980.97(22222CkTssbb05.5703.6640)5.17

    8、0.183.15(2222CxssijT平方和的分解:3 3、方差分析及、方差分析及F F测验测验 变异来源变异来源 DF SS MS F F0.05 F0.01 区组区组 3 2.68 0.89 6.85*3.29 5.42 品种品种 5 52.38 10.48 80.62*2.90 4.56 误差误差 15 1.99 0.13 总变异总变异 23 57.05 表7.3 表表7.27.2资料的方差分析及资料的方差分析及F F测验测验区组间的方差分析与区组间的方差分析与F F测验测验 对于区组项的变异在一般情况下,试验对于区组项的变异在一般情况下,试验只需将他从误差中分离出来,并不一定要作只需

    9、将他从误差中分离出来,并不一定要作F F测验。应该指出,如果区组间的测验。应该指出,如果区组间的F F值达到了值达到了显著水平,并不意味着试验的可靠性差,而显著水平,并不意味着试验的可靠性差,而正好说明由于采用了区组设计正好说明由于采用了区组设计 (局部控(局部控制),把区组间的变异从误差中排除,从而制),把区组间的变异从误差中排除,从而降低了误差,提高了试验的精确度。降低了误差,提高了试验的精确度。4 4、品种间的多重比较、品种间的多重比较)60/(25.04)13.02(22mkgnMSsedLSDLSD0.010.01=S=Sd d t t0.010.01=0.74(kg/60m=0.7

    10、4(kg/60m2 2)(1)(1)最小显著差数法最小显著差数法(LSD)(LSD)以小区平均数为比较标准以小区平均数为比较标准查附表查附表3 3,当,当df=15df=15时,时,t t0.050.05=2.131,t=2.131,t0.010.01=2.947=2.947LSDLSD0.050.05=S=Sd d t t0.050.05=0.53(kg/60m=0.53(kg/60m2 2)因而得到各品种与对照品种(因而得到各品种与对照品种(D D)的差数及其显著性于下表:)的差数及其显著性于下表:表表7.4 7.4 考烟品种小区平均产量与差异显著性考烟品种小区平均产量与差异显著性(LSD

    11、)(LSD)品种品种小区平均产量小区平均产量与对照的差数与对照的差数 及其显著性及其显著性BFCD(CK)AE18.1317.5817.4517.2015.6513.800.93*0.380.25-1.55*-3.40*推论推论:以上比较表明,只有:以上比较表明,只有B B品品种的产量极显著地高于对照种种的产量极显著地高于对照种D D,F F、C C品种皆与对照种无显著差异,品种皆与对照种无显著差异,A A、E E品种极显著地低于对照种。品种极显著地低于对照种。以亩产量为比较标准以亩产量为比较标准 cf=666.67/cf=666.67/试验小区的计产面积试验小区的计产面积 (以平方米为单位)

    12、(以平方米为单位)cf=6000/cf=6000/试验小区的计产面积试验小区的计产面积 (以平方尺为单位)以平方尺为单位)将试验小区的平均产量折算成亩产量,将试验小区的平均产量折算成亩产量,通常需扩大通常需扩大cfcf倍倍亩)/(78.21.11413.022kgcfsnMSdeLSDLSD0.010.01=S=Sd d t t0.010.01=8.19=8.19(kg/kg/亩)亩)因本试验的小区面积为因本试验的小区面积为60m60m2 2,故故:cf=666.67/60=11.1:cf=666.67/60=11.1倍,倍,差数标准误也应扩大差数标准误也应扩大11.111.1倍,即:倍,即:

    13、LSDLSD0.050.05=S=Sd d t t0.050.05=5.92 =5.92(kg/kg/亩亩)品种品种亩产量亩产量与对照的差数与对照的差数 及其显著性及其显著性BFCD(CK)AE201.42195.31193.87191.09173.87153.3110.33*4.222.780.00-17.42*-37.78*烤烟品种亩产量与亩产量比较的差异显著性烤烟品种亩产量与亩产量比较的差异显著性 推论推论:比较结果表明,:比较结果表明,B B品种极显著地高于对照种,品种极显著地高于对照种,F F、C C品种与对照种无显著差异,品种与对照种无显著差异,A A、E E品种极显著低于品种极显

    14、著低于对照种对照种。以小区总产量为比较标准以小区总产量为比较标准 差数标准误差数标准误02.113.04222eednMSnnMSsLSDLSD0.010.01=S=Sd dt t0.010.01=1.02=1.022.947=3.01(kg/42.947=3.01(kg/460m60m2 2)LSDLSD0.050.05=S=Sd d t t0.050.05=1.02=1.022.131=2.17(kg/42.131=2.17(kg/460m60m2 2)品种品种 小区总产量小区总产量 与对照的差异及其显著性与对照的差异及其显著性B 72.50F 70.30C 69.80D(ck)68.80

    15、A 62.60E 55.20 3.7*1.5 1.0 0 -6.2*-13.6*烤烟品种的小区总产及其差异显著性烤烟品种的小区总产及其差异显著性(2 2)最小显著极差法()最小显著极差法(LSRLSR)18.0413.0nMSSex当当df=15df=15,k=2k=2、3 3、6 6时,由附表时,由附表6 6可查出相应可查出相应5%5%、1%1%的的SSRSSR值,根据公式:值,根据公式:xSSSRLSR如果我们的试验目的在于不仅要测验各品种与对如果我们的试验目的在于不仅要测验各品种与对照相的差异显著性,而且要测验各品种相互比较照相的差异显著性,而且要测验各品种相互比较的差异显著性,此时应选

    16、用的差异显著性,此时应选用SSRSSR法。法。以小区平均数为比较标准以小区平均数为比较标准 品种标准误品种标准误即可求得各即可求得各k k的最小显著极差值(的最小显著极差值(LSRLSR),见表见表7.5.7.5.表表7.5 7.5 烤烟品种新复极差测验的最小显著极差烤烟品种新复极差测验的最小显著极差(LSR)(LSR)K 2 3 4 5 6SSR0.05 3.01 3.16 3.25 3.31 3.36SSR0.01 4.17 4.37 4.50 4.58 4.64LSR0.05 0.54 0.57 0.59 0.60 0.61LSR0.01 0.75 0.79 0.81 0.82 0.84

    17、表表7.6 7.6 烤烟品种产量的新复极差测验烤烟品种产量的新复极差测验品种品种 小区平均产量小区平均产量 差异显著性差异显著性 5%1%B 18.13 F 17.58C 17.45D(CK)17.20 A 15.65 E 13.80 a b b b c d AAABDCBB 推论推论:以上结果表明,考烟品:以上结果表明,考烟品种种B B的产量,显著高于其他品种,的产量,显著高于其他品种,并极显著地高于并极显著地高于D D、A A、E E品种。品种。F F、C C、D D品种之间没有显著的差异,但品种之间没有显著的差异,但均极显著地高于均极显著地高于A A、E E品种。品种。品种标准误品种标准

    18、误cfnMSSe亩产量品种标准误品种标准误eTnMSS以亩产量为比较标准以亩产量为比较标准以小区总产量为比较标准以小区总产量为比较标准 拉丁方试验设计在纵横两向皆成区组。拉丁方试验设计在纵横两向皆成区组。因此在总变异中要扣除行区组间变异、列区因此在总变异中要扣除行区组间变异、列区组间变异和处理间变异后,剩余的部分才是组间变异和处理间变异后,剩余的部分才是试验误差。所以,在试验结果的统计分析上试验误差。所以,在试验结果的统计分析上拉丁方设计要比随机区组设计多一项区组间拉丁方设计要比随机区组设计多一项区组间变异,试验的结果比随机区组更准确。变异,试验的结果比随机区组更准确。7.2 7.2 单因素拉

    19、丁方试验结果的方差分析单因素拉丁方试验结果的方差分析一、拉丁方设计的线性模型与期望均方一、拉丁方设计的线性模型与期望均方 假定以假定以 代表拉丁方的代表拉丁方的 i i 横行、横行、j j 纵行的交叉观纵行的交叉观察值,再以察值,再以 t t 代表处理,则样本中任一观察值的线性模代表处理,则样本中任一观察值的线性模型为:型为:)()(lijljilijetbaxx其中,其中,为样本平均数;为样本平均数;为第为第 i i行区组的效应;行区组的效应;为第为第 j j列区组的效应;列区组的效应;为第为第 l l处理的效应;处理的效应;为随机误差,且相互独立,遵从为随机误差,且相互独立,遵从 分布。分

    20、布。xiaijxjblt)(lije),0(2N 、间彼此独立,没有互作,并且满足间彼此独立,没有互作,并且满足:iajblt0ljitba表表7.7 k7.7 kk k拉丁方设计的方差分析与期望均方拉丁方设计的方差分析与期望均方变异来源变异来源 DF SS MS 期望均方(期望均方(EMS)固定模型固定模型 随机模型随机模型2222222eeeekkk2222222eeeekkk横行区组间横行区组间 k-1 SSa Msa纵行区组间纵行区组间 k-1 SSb MSb处理间处理间 k-1 SSt MSt试验误差试验误差 (k-1)(k-2)SSe MSe 总变异总变异 k2 1 SST二、试验

    21、结果的分析示例二、试验结果的分析示例【例7.2】有有A A、B B、C C、D D、E E 五个水稻五个水稻品种作比较试验,其中品种作比较试验,其中E E 为对照种,采用为对照种,采用5 55 5拉丁方设计,小区计产面积拉丁方设计,小区计产面积2020,其,其田间排列和小区产量如下表,试作分析。田间排列和小区产量如下表,试作分析。列列 区区 组组 D 21.0 B 19.2 C 19.6 A 13.2 E 16.0 行行 A 14.0 D 20.0 E 14.0 C 19.4 B 18.2 区区 E 15.2 C 19.4 D 20.0 B 18.6 A 13.6 组组 C 20.2 A 15

    22、.8 B 19.6 E 14.4 D 19.4 B 17.8 E 17.8 A 17.2 D 21.2 C 20.2 表表7.8 7.8 水稻品种比较水稻品种比较5 55 5拉丁方试验的田间排列和小区产量拉丁方试验的田间排列和小区产量 列列 区区 组组 Ta D 21.0 B 19.2 C 19.6 A 13.2 E 16.0 89.0行行 A 14.0 D 20.0 E 14.0 C 19.4 B 18.2 85.0区区 E 15.2 C 19.4 D 20.0 B 18.6 A 13.6 86.8组组 C 20.2 A 15.8 B 19.6 E 14.4 D 19.4 89.4 B 17

    23、.8 E 17.8 A 17.2 D 21.2 C 20.2 94.2 Tb 88.2 92.2 90.4 86.8 87.4 T=455 8.17x1、试验数据的整理横向区组和纵向区组两向表横向区组和纵向区组两向表表7.9 水稻各品种的小区总和、小区平均和亩产量(kg)品种品种 小区总和(小区总和(Tt.)小区平均小区平均 亩产量亩产量A 13.2+14.0+13.6+15.8+17.2=73.8 14.76 491.95B 19.2+18.2+18.6+19.6+17.4=93.4 18.68 622.60C 19.6+19.4+19.4+20.2+20.2=98.8 19.76 658.

    24、60D 21.0+20.0+20.0+19.4+21.2=101.6 20.32 677.27E 16.0+14.0+15.2+14.4+17.8=77.4 15.48 515.95 矫正数矫正数 :C=T:C=T2 2/k/k2 2=455=4552 2/(5/(55)=79215)=7921 32.15379210.200.190.212222cxSSijT72.879215)2.946.850.89(2222ckTssaa横向区组横向区组:df:dfa a=k-1=5-1=4=k-1=5-1=4总变异总变异 :df:dfT T=k=k2 2 1=5 1=52 2-1=24-1=242、自

    25、由度与平方和的分解、自由度与平方和的分解05.479215)4.872.922.88(2222ckTssbb95.12779215)4.774.938.73(2222ckTsstt80.1295.12705.472.852.153tbaTessssssssss纵行区组纵行区组 :df:dfb b=k-1=5-1=4=k-1=5-1=4品品 种种:dfdft t=k-1=5-1=4=k-1=5-1=4 误误 差差:dfdfe e=(k-1)(k-2)=(5-1)(5-2)=12=(k-1)(k-2)=(5-1)(5-2)=123、方差分析与F测验 表7.10 水稻品种比较试验的方差分析水稻品种比

    26、较试验的方差分析变异来源变异来源 DF SS MS F F0.05 F0.01横行区组横行区组 4 8.72 2.18 2.04 -纵行区组纵行区组 4 4.05 1.01 0.94 -品品 种种 4 127.95 31.99 29.90*3.26 5.41误误 差差 12 12.80 1.07 总变异总变异 24 153.52 由于由于 F=29.9F=29.9F F0.01 0.01 故应接受故应接受H HA,A,即各供试品即各供试品种的产量之间是有极显著差异的。因此需进一步对种的产量之间是有极显著差异的。因此需进一步对品种作多重比较。品种作多重比较。不全相等、EBAAEBAHH:0 对区

    27、组间通常可以不必进行对区组间通常可以不必进行F F测验与多重比较测验与多重比较 对品种间作对品种间作F F测验测验:4、品种间的多重比较 以小区平均数作比较单位以小区平均数作比较单位 (1)最小显著差数法(LSD)差数的标准误差数的标准误 )(65.05)07.12(2kgkMSsed查附表查附表3 3,当,当df=12df=12时,时,t t0.050.05=2.179,t=2.179,t0.010.01=3.055,=3.055,LSDLSD0.050.05=0.65=0.652.179=1.41(kg)2.179=1.41(kg)LSDLSD0.010.01=0.65=0.653.055

    28、=1.99(kg)3.055=1.99(kg)表表7.11 7.11 水稻品种小区平均产量与对照种的差异显著性水稻品种小区平均产量与对照种的差异显著性品种品种小区平均产量小区平均产量与对照的差数及其显著性与对照的差数及其显著性 D C B E(CK)A 20.32 19.76 18.68 15.48 14.76 4.84*4.28*3.20*-0.72 推论推论:测验结果表明,测验结果表明,D D、C C、B B三品种的产三品种的产量均极显著地高于对照种。量均极显著地高于对照种。(2 2)最小显著极差法(最小显著极差法(SSRSSR)46.0507.1kMSsex 当当df=12,k=2df=

    29、12,k=2、3 3、4 4、5 5时,由附时,由附表表6 6可查出相应的可查出相应的5%5%,1%1%临界临界SSRSSR值,值,平均数的标准误平均数的标准误可求得各可求得各k k的最小显著极差值的最小显著极差值LSRLSR,所得结果列于下表:,所得结果列于下表:SSRSLSRx K 2 3 4 5SSR0.05SSR0.01LSR0.05LSR0.013.084.321.421.993.234.551.492.093.334.681.532.153.364.761.552.19根据公式根据公式:表表7.12 7.12 水稻品种新复极差测验的最小显著极差水稻品种新复极差测验的最小显著极差 表

    30、表7.13 7.13 水稻品比试验的新复极差测验水稻品比试验的新复极差测验品种品种小区平均产量小区平均产量 差异显著性差异显著性 5%1%DCBEA 20.3219.7618.6815.4814.76 推论推论:D D品种显著高于品种显著高于B B、E E、A A品种,品种,C C与与D D之间、之间、B B与与C C之间差异均不显著。之间差异均不显著。D D、C C、B B三三品种极显著地高于品种极显著地高于E E、A A品种。品种。aa b b c c AAA BB 7.3 7.3 缺区估计缺区估计一、缺区估计的需要 在田间试验中,由于某种意外因素的影响,在田间试验中,由于某种意外因素的影

    31、响,使某些小区的性状观察值发生丢失的现象,称使某些小区的性状观察值发生丢失的现象,称为为缺区缺区。试验中若有缺区,则试验结果就会丧失均试验中若有缺区,则试验结果就会丧失均衡性,方差分析也因此不能按原计划进行。衡性,方差分析也因此不能按原计划进行。在试验中对缺区的处理,通常有两种在试验中对缺区的处理,通常有两种:某一区组的缺区较多,应考虑放弃某一区组的缺区较多,应考虑放弃这一区组;如果某一处理的缺区较多,这一区组;如果某一处理的缺区较多,则应考虑不要这一处理。则应考虑不要这一处理。如果整个试验只有个别缺区,如果整个试验只有个别缺区,而取消一个处理又会严重影响试验而取消一个处理又会严重影响试验结果

    32、的分析,这时可考虑应用统计结果的分析,这时可考虑应用统计方法方法“”缺区的相应估计值。缺区的相应估计值。这种这种“补上补上”并不能增加任何试验并不能增加任何试验信息,仅是为了便于分析。信息,仅是为了便于分析。二、缺区估计的基本原理v缺区估计的原理是缺区估计的原理是最小二乘法,即取误差项最小二乘法,即取误差项平方和为最小值的方法来估计。平方和为最小值的方法来估计。v一个小区的观察值发生缺失一个小区的观察值发生缺失,要估计出相应小要估计出相应小区的最可能的值或最可信的值,区的最可能的值或最可信的值,从统计学的观从统计学的观点看,实际上就是误差为零的值点看,实际上就是误差为零的值。添加误差为。添加误

    33、差为零的值进行分析,不会改变误差的平方和,从零的值进行分析,不会改变误差的平方和,从而又能保证误差的无偏估计。而又能保证误差的无偏估计。对缺区进行估计,应首先找出相对缺区进行估计,应首先找出相应于有关设计的应于有关设计的误差效应表达式误差效应表达式;令估计值的误差效应为令估计值的误差效应为0 0,即可,即可计算出相应的估计值。计算出相应的估计值。单因素随机区组试验的线性模型为单因素随机区组试验的线性模型为:ijjiijebtxx且满足 ,0,0,0ijjiebt 线性模型的误差项总和必等于零,线性模型的误差项总和必等于零,但任一观察值的误差则不一定等于零。但任一观察值的误差则不一定等于零。现假

    34、定有缺值现假定有缺值 ,则要求将该,则要求将该 添添进资料后能满足上述模型中误差项总和等于进资料后能满足上述模型中误差项总和等于零的条件。因此缺值零的条件。因此缺值 的误差值必须等于的误差值必须等于零。零。ijxijxijxijjiijebtxx0 xbtxejiijij0.nkTkTnTxxxxxebtijjiijijxxtii.xxbjj.即即0)()()(nkxTkxTnxTxijijbijtij其中其中:nktTbTT区组数;区组数;处理数;处理数;缺区所在的处理总和(不含缺区);缺区所在的处理总和(不含缺区);缺区所在的区组总和(不含缺区);缺区所在的区组总和(不含缺区);全试验总和

    35、(不含缺区)。全试验总和(不含缺区)。根据拉丁方设计的线性模型,缺区估计值根据拉丁方设计的线性模型,缺区估计值应满足下式应满足下式:0)(2)()()(2kxTkxTkxTkxTxtba TTTTktba其中,其中,全试验的的总和(不含缺区)全试验的的总和(不含缺区)缺区所在处理的总和(不含缺区)缺区所在处理的总和(不含缺区)缺区所在纵行区组的总和(不含缺区)缺区所在纵行区组的总和(不含缺区)缺区所在横行区组的总和(不含缺区)缺区所在横行区组的总和(不含缺区)试验处理数试验处理数三、缺一个小区的随机区组试验结三、缺一个小区的随机区组试验结 果分析示例果分析示例【例例7.37.3】假设在例假设在

    36、例7.17.1中,烤烟品种中,烤烟品种C C在第在第 区组中的试验数据缺失,试作区组中的试验数据缺失,试作分析。分析。区区 组组 品种品种 品种和品种和 Tt.A 15.3 14.9 16.2 16.2 62.6 B 18.0 17.6 18.0 18.3 72.5 C 16.6 x32 17.6 17.8 52.0+x32 D 16.4 17.3 17.3 17.8 68.8 E 13.7 13.6 13.9 14.0 55.2 F 17.0 17.6 18.2 17.5 70.3 区组总和区组总和 97.0 81.0+x32 101.8 101.6 381.4+x32 (Tr.)表表7.1

    37、4 烤烟品种随机区组试验缺一区产量的试验结果烤烟品种随机区组试验缺一区产量的试验结果根据公式:0)()()(nkxTkxTnxTxijijbijtij可得:0.17)16)(14()4.381526814()1)(1()(32 knTTkTnxtb )1)(1()(knTTkTnxtbij 将估计出的缺值将估计出的缺值x x3232=17.0=17.0置入缺区置入缺区所在的位置,即可按常规方法进行方差所在的位置,即可按常规方法进行方差分析,分析过程同未发生缺值一样,但分析,分析过程同未发生缺值一样,但由于试验本身少了一个小区,由于试验本身少了一个小区,因而在进因而在进行方差分析时,误差项和总变

    38、异项的自行方差分析时,误差项和总变异项的自由度都应比常规分析减少由度都应比常规分析减少1 1。表表7.15 7.15 考烟品种比较试验(缺失一区)方差分析表考烟品种比较试验(缺失一区)方差分析表变异来源变异来源 DF SS MS F F0.05区组区组 3 3.03 1.01 9.18*3.34品种品种 5 51.21 10.24 93.09*2.96误差误差 14 1.56 0.11总变异总变异 22 55.80 对于缺区估计资料的多重比较,一般采用对于缺区估计资料的多重比较,一般采用t t测验测验.当非缺区处理比较时当非缺区处理比较时:nMSsed2如本例如本例A A、B B、D D、E E、F F品种之间的比较品种之间的比较:23.0411.022nMSsed如本例如本例C C品种同其他品种比较:品种同其他品种比较:26.0)16)(14(62411.0)1)(1(2knknMSsed)1)(1(2knknMSsed当缺区处理和非缺区处理间比较时当缺区处理和非缺区处理间比较时:

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:单因素试验结果的统计分析课件.ppt
    链接地址:https://www.163wenku.com/p-4775565.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库