几何发展简史课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《几何发展简史课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何 发展 简史 课件
- 资源描述:
-
1、古希腊数学古希腊数学古典时期古典时期(公元前公元前600年到公元前年到公元前300年年)(1)泰勒斯(约前640前546年)将埃及的实用几何带入希腊,开始证明几何命题。(2)毕达哥拉斯(约前585前500年)学派对图形进行广泛的研究。开头研究的一类问题叫面积应用问题。几何上有三个著名的作图问题:作一正方形使其与给定的圆面积相等;给定正方体一边,求作另一正方体之边,使后者体积两倍于前者体积;用尺规三等分任意角。有好些数学结果是为解决这三个问题而得出的副产品。(3)希波克拉底(前5世纪下半叶)已研究画圆为方及立方倍积问题。据说最早把间接证明引用到数学里的是他。他所著的几何书叫几何原本,已经失传。(
2、4)德谟克利特(约前460前370年)发现棱锥和圆锥的体积分别等于同底等高的棱柱和圆柱体积的三分之一(但是证明是由欧道克斯作出的)。他的几何著作很可能是欧几里德几何原本问世以前的重要著作。(5)亚里士多德(约前384前322年)创造了演绎逻辑,虽然他的哲学对数学的直接影响很少,但对古希腊的论证几何等数学的发展起到明显的促进作用。他给“定义”、“定理”、“公设”等以明确的解释。(6)欧几里德(前300年左右生活在亚历山大城并在该处授徒)著几何原本,确立几何学的逻辑体系,成为世界上最早的公理化数学著作。原本共十三篇,第一篇到第四篇讲直边形和圆的基本性质;第五篇讲比例论;第六篇讲相似形;第七、八、九
3、篇是数论;第十篇是不可公度量的分类;第十一、十二、十三篇是立体几何及穷竭法。西方曾有两本影响最广的书,一本是圣经,另一本就是几何原本。原本是使用时间最长的数学教科书。原本实际上是古希腊古典时期一些个别发现的整理,是众多学者智慧的结晶,欧几里德对前人的成果加以整理、归纳、完善和发展,他依然是个大数学家。虽然它的内容存在缺陷,而且与现代教学趋势日益不相适应,但从历史的角度看,它确实是一部伟大的著作,无愧于“西方数学的代表作”的称号。亚历山大时期亚历山大时期(前前300年到公元年到公元600 阿基米德(前287前212年)利用穷竭法求出球的表面积和体积公式,研究抛物弓形面积,给出的范围,它的几何著作
4、是希腊数学的顶峰。大约从公元1世纪初起,亚历山大的数学工作特别是几何工作开始衰落.而此时在东方的中国数学正蓬勃发展。二、中国古代几何学二、中国古代几何学 数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。西安半坡出土的陶器有用18个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画
5、圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据史记夏本纪记载,夏禹治水时已使用了这些工具 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。公元前一世纪的周髀算经提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。礼记内则篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成
6、为专门的课程 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内已有“规”和“矩”两个字,规是用来画圆的,矩是用来画方
7、的.春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡,新的生产关系促进了科学技术的发展与进步。战国时期人们通过田地及国土面积的测量,城池的修建,水利工程的设计等生产生活实践,积累了大量的数学知识。(1)但是秦朝的焚书坑儒给中国文化事业造成空前的浩劫,西汉作为数学新发展及先秦典籍的抢救工作的结晶,便是九章九章算术算术的成书。的成书。它对于中国和东方数学,大体相当于几何原本对于希腊和欧洲数学。中国古代的几何一般不讨论图形离开数量关系的性质,而要计算出长度、面积、体积。在九章算术的方田章中有各种多边形、圆、弓形等的面积公式;商功章讨论了各种立体的体积公式。(2)刘徽和他的)刘
8、徽和他的九章算术注九章算术注便是魏晋时代便是魏晋时代造就的最伟大的数学家和最杰出的数学著作。造就的最伟大的数学家和最杰出的数学著作。该书前九卷全面论证了九章算术的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了九章的某些不正确的或错误的公式,探索出解决球体积的正确途径。(3)缀术缀术包含了祖冲之包含了祖冲之(429500年)和和儿子祖暅之儿子祖暅之(一作祖暅,生平不详)的数学贡献。的数学贡献。祖暅沿用刘徽的“牟合方盖”,证明了球体体积的计算问题,充分显示了中国古代数学家的聪明才智
展开阅读全文