[新版]液晶高分子材料课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《[新版]液晶高分子材料课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新版 液晶 高分子材料 课件
- 资源描述:
-
1、 液晶是某些物质在熔融态或在溶液状态下形成的有序流体的总称。它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。液晶态的特点是分子具有沿着某一个方向取向这个方向一般叫指向矢(n)。分子在液态排列没有取向优势。而在结晶态分子排列非常有序。几乎没有自由活动空间。液晶态中分子介于液态和晶态之间的状态,又称为介晶态 另外,从无序的各向同性态到长程有序的晶态之间的液晶态丰富多彩。描述其特征采用了键取向有序和分子位置(近程)有序 基本的液晶基元 形成液晶的物质通常具有刚性的分子结构,同时还具有在液态下维持分子的某种有序排列所必需的结构因素,这种结构特征常常与分子中含有对位苯基、强极性基团和高度可极
2、化基团或氢键相联系。大多数液晶物质是由棒状或长条状分子构成的,其分子结构常常具有2 个显著特征,一是分子的几何形状具有不对称性,即有大的长径比。二是分子间具有各向异性的相互作用。多数液晶物质由3部分构成:由2 个或多个芳香环或其他环状结构组成的核,核间有一个桥键X 分子的两端具有较柔顺的极性或可极化的基团,如COOR,CN,NO2,NH2 等。分子的中间部分即由核和桥键组成的部分称为液晶基元。基本的热致液晶分子一般具有刚性的棒状、盘状、板状等几何形状凝聚在一起,由于不对称的分子间作用力,形成取向排列 当分子以氢键或其它分子间弱相互作用形成分子以上的聚集体也具有特殊几何形状,或不同类型的液晶分子
3、组合,也可以形成液晶态 第一种分类法热致液晶和溶致液晶 1、按液晶形成的条件,可将液晶分为热致性和溶致性两类。(1)热致液晶 通过加热而呈现液晶态的物质称为热致液晶,多数液晶是热致液晶。(2)溶致液晶 因加入溶剂(在某一浓度范围内)而呈现液晶态的物质称为溶致液晶。溶致性液晶又分为两类,第一类是双亲分子(如脂肪酸盐、离子型和非离子型表面活性剂以及类脂等)与极性溶剂组成的二元或多元体系,其液晶相态可分为层状相、立方相和六方相等三种;第二类是非双亲刚棒状分子(如多肽、核酸及病毒等天然高分子和聚对二甲酰对苯二胺等合成高分子)的溶液。它们的液晶态可分为向列相、近晶相和胆甾甾相三种。此外,在外场(如压力、
4、流场、电场、磁场和光场等)作用下进入液晶态的物质称为感应液晶。例如,聚乙烯在某一高压下出现液晶态称为压致液晶,聚对苯二甲酰对氨基苯甲酰肪在施加流动场后呈现液晶态是典型的流致液晶。2第二种分类法向列相、近晶相和胆甾甾相 大多数热致液晶和刚棒状溶致液晶,按其液晶相态有序性的不同可分为向列相、近晶相和胆甾甾相三类(1)向列相 大多数液晶是棒状分子。在向列相中,棒状分子彼此平行排列,仅具有一维有序,沿指向矢方向的取向有序,但分子的重心排布无序,在这三类液晶中仅向列相没有平移有序,它的有序度最低,粘度也小。(2)近晶相;按惯例,近晶相的分类j根据发现年代前后而命名为A,B的至今排列到Q相,共17种亚相,
5、记为SA,SBSQ相,还有Sc*,SI*,SF*,SJ*,SG*,SK*,SH*,SM*,SO*等九种具有铁电性的手征近晶相和反铁电相SCA*,约27种亚相,以SA及Sc相较常见.在这三类相态中以近晶相的结构最接近晶体结构,故有“近晶”相这个名称。这类液晶除了沿指向矢方向的取向有序以外,还有沿某一方向的平移有序。在近晶相,棒状分子平行排列成层状结构,分子的长轴垂直于层状结构的平面。在层内分子的排列具有二维有序性。分子可在本层运动,但不能来往于各层之间,因此层片之间可以相互滑移,但垂直于层片方向的流动却很困难,这导致近晶相的粘度比向列相大。(3)胆甾甾相 因这类液晶物质中有许多是胆甾甾醇衍生物,
6、故有此名,但有更多的胆甾甾相液晶并不含胆甾甾醇结构。胆甾甾相液晶都具有不对称碳原子,分子本身不具有镜象对称性,它种手征性液晶。在胆甾甾相中,呈长而扁平形状的分子排列成层,层内分子互相平行,分子的长轴平行于层平面,不同层分子分子长轴的方向有变化,沿层的法线方向排列成螺旋状结构,胆甾甾相与向列相的区别是前者有层状结构。胆甾甾相与近晶相的区别是它有螺旋状结构。高分子液晶材料表征的重点是:是否存在液晶态;何种相态类型和相变温度。常用方法有以下三种。热台偏光显微镜(POM)法 示差扫描量热法(DSC法)x射线衍射法 热台偏光显微镜(POM)法 它是表征新液晶物质最常用、简单和首选的方法。根据液晶的定义,
7、若观察到某物质有流动性(或剪切流动性)和光学各向异性(在POM下有双折射现象,可观察到各种彩色光学图案,又称“织构”,“纹理”或“组织”)则可确认存在液晶态和具有液晶性(SD相和蓝相例外)。通过观察“织构”和温度的变化可以记录该物质的软化温度或熔点、液晶态的清亮点和各液晶相区的转变温度。从“织构”可判断该液晶的相态类型,向列液晶态典型的纹影织构(schlieren texture).暗区叫黑刷子.代表分子平行或垂直偏振方向排列 a近晶A 完整扇形焦锥织构,b近晶B 完整扇形焦锥织构,c近晶C 在A C 转变中的破碎扇形焦锥织构,d 近晶C 在A C 转变结束的破碎扇形焦锥织构 示差扫描量热法(
8、DSC法)DSC法用途之一是为液晶高分子材料提供相转变温度数据。DSC法用途之二是根据曲线图上各转变点的热熔值可判断液晶的类型。近晶相的有序性最高,故热焓值最高,约为6321kJmol。向列相液晶的热焓值较低,约为1336 kJmol。胆甾甾相液晶的层片内结构类似于向列相,放其热焓值也与向列相液晶的相似。x射线衍射法 x射线衍射法是鉴别三维有序结构的最有力手段之一,用它来判断液晶相的类型也十分有效,其作用是POM和DSC法所不能代替的。近晶相液晶的衍射图呈现一个窄的内环(22。5。)和一个或多个外环。内环反映了近晶相液晶的分子层距,外环反映了分子横向堆砌的有序程度。高度有序的高分子近晶相液晶的
9、确认还须辅以其他手段如穆斯堡效应实验等。向列相液晶的衍射图的内环是弥散的图象,外环是一个220。的晕圈。这表示它没有薄层结构,且横向排列是长程无序的。此外,相溶性判别法、透射电镜、电子衍射法、红外光谱法、NMR法、小角中子衍射法也是研究高分子液晶相态的重要方法。液晶高分子是在一定条件下能以液晶相态存在的高分子,与其它高分子材料相比,液晶高分子有液晶相所特有的取向序和位置序;与普通低分子液晶化合物相比,液晶高分子又具有高分子化合物的结构和功能特性,如具有高分子量等。高分子化合物的功能特性和液晶相序的有机结合赋予了液晶高分子以鲜明的个性和特色,以高强度、高模量、低热膨胀率、耐辐射和化学药品腐蚀等优
10、异性能开辟了特种高分子材料的新领域。在机械、电子、航空航天等领域的应用已崭露头角,目前正向生命科学、信息科学、环境科学蔓延渗透,并将波及其它科技领域。高分子液晶融合了聚合物和小分子液晶,聚合物的链段上含有小分子液晶的化学结构,能表现液晶的性质,同时还兼有聚合物的其它性质.主要应用领域是:(1)利用聚合物的优异使用性能,提高液晶使用的方便性.(2)利用液晶的流动性质和组装能力,加工聚合物(结构材料和新功能材料)液晶高分子的分类液晶高分子的分类 按照液晶相液晶高分子可分为:(1)向列型液晶,液晶分子刚性部分平行排列,重心排列无序,保持一维有序性,液晶分子沿其长轴方向可移动,不影响晶相结构,是流动性
11、最好的液晶。(2)近晶型液晶,在所有液晶中近固体晶体而得名。分子刚性部分平行排列,构成垂直于分子长轴方向的层状结构,具二维有序性。(3)胆甾型液晶,构成液晶的分子是扁平型的,依靠端基的相互作用平行排列成层状结构,但它们的长轴与层面平行而不是垂直。在相邻两层之间,由于伸出平面外的光学活性基团的作用,分子长轴取向依次规则地旋转一定角度,层层旋转构成螺旋结构。此类液晶可使反射的白光发生色散而呈现彩虹般颜色。按照分子中液晶基元的位置可把液晶高分子分为:(1)主链型液晶高分子,液晶基元在高分子主链上,如kevlar 纤维。(2)侧链型液晶高分子,液晶基元通过柔性链与主链相连,大多数功能性液晶高分子属于类
12、。根据形成方式的不同又可以分成热致型液晶和溶致型液晶。还可以分为天然高分子液晶和新型液晶高分子。天然高分子在特定条件下表现为液晶态,如烟花草病毒、多肽、蛋白质、核酸、细胞膜和纤维素等都属于天然高分子液晶。新型液晶高分子又包括甲壳型液晶高分子和树枝状液晶高分子。液晶高分子的特性液晶高分子的特性 1 取向方向的高拉伸强度和高模量。与柔性链高分子比较,分子主链或侧链带有介晶基元的LCP,最突出的特点是在外力场中容易发生分子链取向。实验研究表明,LCP 处于液晶态时,无论是熔体还是溶液,都具有一定的取向度。LCP 液体流经喷丝孔、模口、流道的时候,即使在很低剪切速率下获得的取向,在大多数情况下,不再进
13、行后拉伸,就能达到一般柔性链高分子经过后拉伸的分子取向度。因而即使不添加增强材料也能达到甚至超过普通工程材料用百分之十几玻纤增强后的机械强度,表现出高强度高模量的特性。如Kevlar 的比强度和比模量均达到钢的10 倍。2 耐热性突出 由于LCP 的介晶基元大多由芳环构成,其耐热性相对比较突出。如Xydar 的熔点为421,空气中的分解温度达到560,其热变形温度也可达350,明显高于绝大多数塑料。此外LCP 还有很高的锡焊耐热性,如Ekonol 的锡焊耐热性为300340/60s。3 热膨胀因数很低 由于取向度高,LCP 在其流动方向的膨胀因数要比普通工程塑料低一个数量级,达到一般金属的水平
14、,甚至出现负值,这样LCP 在加工成型过程中不收缩或收缩很低,保证了制品尺寸的精确和稳定。4 阻燃性优异 LCP 分子链由大量芳香环所构成,除了含有酰肼键的纤维外,都特别难以燃烧,燃烧后炭化,表示聚合物耐燃烧性指标极限氧指数(LOI)相当高,如Kevlar 在火焰中有很好的尺寸稳定性,若在其中添加少量磷等,LCP 的LOI 值可达40 以上。5 电性能和成型加工性优异 LCP 绝缘强度高和介电常数低,而且两者都很少随温度的变化而变化,并导热和导电性能低,其体积电阻一般可高达1013m,抗电弧性也较高。另外LCP的熔体粘度随剪切速率的增加而下降,流动性能好,成型压力低,因此可用普通的塑料加工设备
15、来注射或挤出成型,所得成品的尺寸很精确。此外,LCP 具有高抗冲性和抗弯模量,蠕变性能很低,其致密的结构使其在很宽的温度范围内不溶于一般的有机溶剂和酸碱,具有突出的耐化学腐蚀性。当然,LCP 尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进。主链型液晶高分子是刚性液晶基元位于主链之中的液晶高分子。分为热致和溶致型两类。1.溶致型主链液晶高分子 溶致型主链液晶高分子主链中有刚性结构,它的分子溶解在溶液中,达到一定浓度后,高分子主链在溶液中呈有序排列,具有晶体性能。为了使液晶相在溶液中容易形成,溶致型液晶高分子中一般都会有双亲活性结构。在溶液中当液晶分子的浓度
16、达到一定时,双亲性分子可在溶液中形成胶束,形成油包水或水包油的胶束结构。当液晶分子浓度进一步增加时,双亲性分子便可聚集形成排列有序的液晶结构。溶致型主链高分子主链上液晶基元一般含有芳环和杂环结构,可用于制造高强度及高模量的高分子纤维和膜材料。溶致性主链型液晶高分子的分子设计 溶致性主链型液晶高分子又可分为天然的(如多肽、核酸、蛋白质、病毒和纤维素衍生物等)和人工合成的两类。前者的溶剂一般是水或极性溶剂;后者的主要代表是芳族聚酰胺和聚芳杂环,其溶剂是强质子酸或对质子惰性的酰胺类溶剂,并且添加少量氯化锂或氯化钙。这类溶液出现液晶态态条件是:聚合物的浓度高于临界值;聚合物的分子量高于临界值;溶液的温
17、度低于临界值。溶致性主链型液晶高分子的介晶基元通常由环状结构和桥键两部分所组成。常见的环状结构如下:常见的桥键如下 热致型主链液晶高分子 热致型液晶高分子的刚性结构即液晶基元在聚合物主链上,这些液晶基元多是芳烃和杂环结构的化合物。热致液晶是指高分子在熔化成熔融态时,分子的刚性链仍保持按一定规律排列。刚性分子热稳定性高,有利于高分子的有序排列,但若刚性太大,则很难使其在低于分解温度下熔化。降低这一类液晶的熔点是分子设计的主要任务。热致型主链高分子液晶制得的材料制品,最大特点是机械性能好,拉伸强度高,热稳定性好,线性热膨胀系数小,适于制造精确度要求高的制品。另外,这种液晶透气性低,有良好的抗水解和
展开阅读全文